从纳升溶液中检测爆炸物分子:亲水性光子晶体生物二氧化硅表面增强拉曼光谱传感的新范例

Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica.

作者信息

Kong Xianming, Xi Yuting, Le Duff Paul, Chong Xinyuan, Li Erwen, Ren Fanghui, Rorrer Gregory L, Wang Alan X

机构信息

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331 USA.

School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, OR, 97331 USA.

出版信息

Biosens Bioelectron. 2017 Feb 15;88:63-70. doi: 10.1016/j.bios.2016.07.062. Epub 2016 Jul 19.

Abstract

We demonstrate a photonic crystal biosilica surface-enhanced Raman scattering (SERS) substrate based on a diatom frustule with in-situ synthesized silver nanoparticles (Ag NPs) to detect explosive molecules from nanoliter (nL) solution. By integrating high density Ag NPs inside the nanopores of diatom biosilica, which is not achievable by traditional self-assembly techniques, we obtained ultra-high SERS sensitivity due to dual enhancement mechanisms. First, the hybrid plasmonic-photonic crystal biosilica with three dimensional morphologies was obtained by electroless-deposited Ag seeds at nanometer sized diatom frustule surface, which provides high density hot spots as well as strongly coupled optical resonances with the photonic crystal structure of diatom frustules. Second, we discovered that the evaporation-driven microscopic flow combined with the strong hydrophilic surface of diatom frustules is capable of concentrating the analyte molecules, which offers a simple yet effective mechanism to accelerate the mass transport into the SERS substrate. Using the inkjet printing technology, we are able to deliver multiple 100pico-liter (pL) volume droplets with pinpoint accuracy into a single diatom frustule with dimension around 30µm×7µm×5µm, which allows for label-free detection of explosive molecules such as trinitrotoluene (TNT) down to 10M in concentration and 2.7×10g in mass from 120nL solution. Our research illustrates a new paradigm of SERS sensing to detect trace level of chemical compounds from minimum volume of analyte using nature created photonic crystal biosilica materials.

摘要

我们展示了一种基于硅藻壳的光子晶体生物二氧化硅表面增强拉曼散射(SERS)基底,该基底原位合成了银纳米颗粒(Ag NPs),用于检测纳升(nL)溶液中的爆炸物分子。通过将高密度的Ag NPs整合到硅藻生物二氧化硅的纳米孔内,这是传统自组装技术无法实现的,由于双重增强机制,我们获得了超高的SERS灵敏度。首先,通过在纳米尺寸的硅藻壳表面化学沉积Ag种子,获得了具有三维形态的混合等离子体-光子晶体生物二氧化硅,它提供了高密度的热点以及与硅藻壳光子晶体结构的强耦合光学共振。其次,我们发现蒸发驱动的微观流动与硅藻壳的强亲水性表面相结合,能够浓缩分析物分子,这提供了一种简单而有效的机制来加速物质向SERS基底的传输。使用喷墨打印技术,我们能够将多个100皮升(pL)体积的液滴精确地滴入尺寸约为30μm×7μm×5μm的单个硅藻壳中,这使得能够从120nL溶液中无标记检测浓度低至10M、质量低至2.7×10g的爆炸物分子,如三硝基甲苯(TNT)。我们的研究展示了一种新的SERS传感范式,即使用天然形成的光子晶体生物二氧化硅材料,从最小体积的分析物中检测痕量化学化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索