Suppr超能文献

由简单胶体链折叠而成的可重构微机器人。

Reconfigurable microbots folded from simple colloidal chains.

机构信息

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401.

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012.

出版信息

Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18186-18193. doi: 10.1073/pnas.2007255117. Epub 2020 Jul 17.

Abstract

To overcome the reversible nature of low-Reynolds-number flow, a variety of biomimetic microrobotic propulsion schemes and devices capable of rapid transport have been developed. However, these approaches have been typically optimized for a specific function or environment and do not have the flexibility that many real organisms exhibit to thrive in complex microenvironments. Here, inspired by adaptable microbes and using a combination of experiment and simulation, we demonstrate that one-dimensional colloidal chains can fold into geometrically complex morphologies, including helices, plectonemes, lassos, and coils, and translate via multiple mechanisms that can be varied with applied magnetic field. With chains of multiblock asymmetry, the propulsion mode can be switched from bulk to surface-enabled, mimicking the swimming of microorganisms such as flagella-rotating bacteria and tail-whipping sperm and the surface-enabled motion of arching and stretching inchworms and sidewinding snakes. We also demonstrate that reconfigurability enables navigation through three-dimensional and narrow channels simulating capillary blood vessels. Our results show that flexible microdevices based on simple chains can transform both shape and motility under varying magnetic fields, a capability we expect will be particularly beneficial in complex in vivo microenvironments.

摘要

为了克服低雷诺数流动的可逆性,已经开发出了各种能够快速运输的仿生微型机器人推进方案和装置。然而,这些方法通常是针对特定的功能或环境进行优化的,而没有许多真实生物体在复杂微环境中表现出的灵活性。在这里,受适应性微生物的启发,我们结合实验和模拟,证明了一维胶体链可以折叠成复杂的几何形状,包括螺旋、扭结、套索和线圈,并通过多种机制进行平移,这些机制可以通过施加的磁场进行改变。对于具有多块不对称性的链,推进模式可以从体相驱动切换到表面驱动,模拟了鞭毛旋转细菌和尾鞭精子等微生物的游动以及拱起和拉伸尺蠖和侧行蛇的表面驱动运动。我们还证明了可重构性使我们能够通过模拟毛细血管的三维和狭窄通道进行导航。我们的结果表明,基于简单链的灵活微器件可以在不同的磁场下改变形状和运动方式,我们预计这种能力在复杂的体内微环境中特别有益。

相似文献

1
Reconfigurable microbots folded from simple colloidal chains.由简单胶体链折叠而成的可重构微机器人。
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18186-18193. doi: 10.1073/pnas.2007255117. Epub 2020 Jul 17.
3
Chain Assembly Kinetics from Magnetic Colloidal Spheres.磁性胶体球的链组装动力学
Langmuir. 2022 May 10;38(18):5730-5737. doi: 10.1021/acs.langmuir.2c00343. Epub 2022 Apr 29.
4
Magnetic Microlassos for Reversible Cargo Capture, Transport, and Release.磁性微管用于可逆货物捕获、运输和释放。
Langmuir. 2017 Jun 13;33(23):5932-5937. doi: 10.1021/acs.langmuir.7b00357. Epub 2017 Mar 27.
7
Microscopic artificial swimmers.微观人工游动体
Nature. 2005 Oct 6;437(7060):862-5. doi: 10.1038/nature04090.
9
Controlled surface-induced flows from the motion of self-assembled colloidal walkers.受自组装胶体步行者运动控制的表面诱导流。
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):535-40. doi: 10.1073/pnas.0906489107. Epub 2009 Dec 18.

引用本文的文献

2
Actuating superparamagnetic nanoparticle monolayers.驱动超顺磁性纳米颗粒单层
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2424073122. doi: 10.1073/pnas.2424073122. Epub 2025 Mar 26.
5
Progress in the Synthesis of Colloidal Machines.胶体机器合成的进展。
Acc Mater Res. 2024 Feb 22;5(3):249-258. doi: 10.1021/accountsmr.3c00203. eCollection 2024 Mar 22.
6
Collective chemomechanical oscillations in active hydrogels.活性水凝胶中的集体化学机械振荡
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2313258121. doi: 10.1073/pnas.2313258121. Epub 2024 Feb 1.
7
Colloidal tubular microrobots for cargo transport and compression.用于货物运输和压缩的胶体管状微型机器人。
Proc Natl Acad Sci U S A. 2023 Sep 12;120(37):e2304685120. doi: 10.1073/pnas.2304685120. Epub 2023 Sep 5.
9
Polymer folding through active processes recreates features of genome organization.聚合物通过主动过程折叠再现基因组组织的特征。
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2221726120. doi: 10.1073/pnas.2221726120. Epub 2023 May 8.

本文引用的文献

1
Driven dynamics in dense suspensions of microrollers.微辊致密悬浮液中的驱动动力学。
Soft Matter. 2020 Sep 14;16(34):7982-8001. doi: 10.1039/d0sm00879f. Epub 2020 Aug 10.
3
Shape-encoded dynamic assembly of mobile micromachines.形状编码的动态组装移动微机器。
Nat Mater. 2019 Nov;18(11):1244-1251. doi: 10.1038/s41563-019-0407-3. Epub 2019 Jun 24.
4
Adaptive locomotion of artificial microswimmers.人工微游泳者的自适应运动。
Sci Adv. 2019 Jan 18;5(1):eaau1532. doi: 10.1126/sciadv.aau1532. eCollection 2019 Jan.
7
Small-scale soft-bodied robot with multimodal locomotion.具有多模态运动的小型软体机器人。
Nature. 2018 Feb 1;554(7690):81-85. doi: 10.1038/nature25443. Epub 2018 Jan 24.
8
Graphene-based bimorphs for micron-sized, autonomous origami machines.基于石墨烯的双翼结构用于微尺寸的自主折纸机器人。
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):466-470. doi: 10.1073/pnas.1712889115. Epub 2018 Jan 2.
10
Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.细菌利用鞭毛丝的多态不稳定性来逃避陷阱。
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6340-6345. doi: 10.1073/pnas.1701644114. Epub 2017 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验