Suppr超能文献

原位设计用于长寿命锂氧电池的梯度锂捕获与准自发扩散阳极保护层

In Situ Designing a Gradient Li Capture and Quasi-Spontaneous Diffusion Anode Protection Layer toward Long-Life Li-O Batteries.

作者信息

Yu Yue, Huang Gang, Wang Jia-Zhi, Li Kai, Ma Jin-Ling, Zhang Xin-Bo

机构信息

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

University of Science and Technology of China, Hefei, 230026, P. R. China.

出版信息

Adv Mater. 2020 Sep;32(38):e2004157. doi: 10.1002/adma.202004157. Epub 2020 Aug 9.

Abstract

Lithium metal is the only anode material that can enable the Li-O battery to realize its high theoretical energy density (≈3500 Wh kg ). However, the inherent uncontrolled dendrite growth and serious corrosion limitations of lithium metal anodes make it experience fast degradation and impede the practical application of Li-O batteries. Herein, a multifunctional complementary LiF/F-doped carbon gradient protection layer on a lithium metal anode by one-step in situ reaction of molten Li with poly(tetrafluoroethylene) (PTFE) is developed. The abundant strong polar C-F bonds in the upper carbon can not only act as Li capture site to pre-uniform Li flux but also regulate the electron configuration of LiF to make Li quasi-spontaneously diffuse from carbon to LiF surface, avoiding the strong Li -adhesion-induced Li aggregation. For LiF, it can behave as fast Li conductor and homogenize the nucleation sites on lithium, as well as ensure firm connection with lithium. As a result, this well-designed protection layer endows the Li metal anode with dendrite-free plating/stripping and anticorrosion behavior both in ether-based and carbonate ester-based electrolytes. Even applied protected Li anodes in Li-O batteries, its superiority can still be maintained, making the cell achieve stable cycling performance (180 cycles).

摘要

锂金属是唯一能够使锂氧电池实现其高理论能量密度(约3500瓦时/千克)的负极材料。然而,锂金属负极固有的不受控制的枝晶生长和严重的腐蚀限制使其快速降解,并阻碍了锂氧电池的实际应用。在此,通过熔融锂与聚四氟乙烯(PTFE)的一步原位反应,在锂金属负极上制备了一种多功能互补的LiF/F掺杂碳梯度保护层。上层碳中丰富的强极性C-F键不仅可以作为锂捕获位点来预先均匀化锂通量,还可以调节LiF的电子构型,使锂从碳到LiF表面准自发扩散,避免强锂粘附诱导的锂聚集。对于LiF,它可以作为快速锂导体,使锂上的成核位点均匀化,并确保与锂牢固连接。因此,这种精心设计的保护层赋予锂金属负极在醚基和碳酸酯基电解质中均具有无枝晶的电镀/剥离和抗腐蚀行为。即使将受保护的锂负极应用于锂氧电池中,其优势仍然可以保持,使电池实现稳定的循环性能(180次循环)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验