Suppr超能文献

机器学习与经典统计学在预测 IVF 结局中的比较。

Machine learning vs. classic statistics for the prediction of IVF outcomes.

机构信息

Public Health Services, Ministry of Health, 39 Yirmiyahu Street, 9446724, Jerusalem, Israel.

School of Engineering, Ruppin Academic Center, Emek Hefer, Israel.

出版信息

J Assist Reprod Genet. 2020 Oct;37(10):2405-2412. doi: 10.1007/s10815-020-01908-1. Epub 2020 Aug 11.

Abstract

PURPOSE

To assess whether machine learning methods provide advantage over classic statistical modeling for the prediction of IVF outcomes.

METHODS

The study population consisted of 136 women undergoing a fresh IVF cycle from January 2014 to August 2016 at a tertiary, university-affiliated medical center. We tested the ability of two machine learning algorithms, support vector machine (SVM) and artificial neural network (NN), vs. classic statistics (logistic regression) to predict IVF outcomes (number of oocytes retrieved, mature oocytes, top-quality embryos, positive beta-hCG, clinical pregnancies, and live births) based on age and BMI, with or without clinical data.

RESULTS

Machine learning algorithms (SVM and NN) based on age, BMI, and clinical features yielded better performances in predicting number of oocytes retrieved, mature oocytes, fertilized oocytes, top-quality embryos, positive beta-hCG, clinical pregnancies, and live births, compared with logistic regression models. While accuracies were 0.69 to 0.9 and 0.45 to 0.77 for NN and SVM, respectively, they were 0.34 to 0.74 using logistic regression models.

CONCLUSIONS

Our findings suggest that machine learning algorithms based on age, BMI, and clinical data have an advantage over logistic regression for the prediction of IVF outcomes and therefore can assist fertility specialists' counselling and their patients in adjusting the appropriate treatment strategy.

摘要

目的

评估机器学习方法是否在预测试管婴儿结局方面优于经典统计学建模。

方法

研究人群包括 2014 年 1 月至 2016 年 8 月在一家三级大学附属医院接受新鲜试管婴儿周期的 136 名女性。我们测试了两种机器学习算法(支持向量机(SVM)和人工神经网络(NN))与经典统计学(逻辑回归)的能力,以预测基于年龄和 BMI 的试管婴儿结局(获取的卵子数量、成熟卵子、优质胚胎、β-hCG 阳性、临床妊娠和活产),或不考虑临床数据。

结果

基于年龄、BMI 和临床特征的机器学习算法(SVM 和 NN)在预测获取的卵子数量、成熟卵子、受精卵子、优质胚胎、β-hCG 阳性、临床妊娠和活产方面的表现优于逻辑回归模型。NN 和 SVM 的准确率分别为 0.69 至 0.9 和 0.45 至 0.77,而逻辑回归模型的准确率为 0.34 至 0.74。

结论

我们的研究结果表明,基于年龄、BMI 和临床数据的机器学习算法在预测试管婴儿结局方面优于逻辑回归,因此可以辅助生育专家进行咨询,并帮助患者调整适当的治疗策略。

相似文献

1
Machine learning vs. classic statistics for the prediction of IVF outcomes.机器学习与经典统计学在预测 IVF 结局中的比较。
J Assist Reprod Genet. 2020 Oct;37(10):2405-2412. doi: 10.1007/s10815-020-01908-1. Epub 2020 Aug 11.

引用本文的文献

本文引用的文献

3
An artificial neural network for the prediction of assisted reproduction outcome.人工神经网络在辅助生殖结局预测中的应用。
J Assist Reprod Genet. 2019 Jul;36(7):1441-1448. doi: 10.1007/s10815-019-01498-7. Epub 2019 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验