Suppr超能文献

大数据方法在心力衰竭研究中的应用。

Big Data Approaches in Heart Failure Research.

机构信息

Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany.

Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.

出版信息

Curr Heart Fail Rep. 2020 Oct;17(5):213-224. doi: 10.1007/s11897-020-00469-9.

Abstract

PURPOSE OF REVIEW

The goal of this review is to summarize the state of big data analyses in the study of heart failure (HF). We discuss the use of big data in the HF space, focusing on "omics" and clinical data. We address some limitations of this data, as well as their future potential.

RECENT FINDINGS

Omics are providing insight into plasmal and myocardial molecular profiles in HF patients. The introduction of single cell and spatial technologies is a major advance that will reshape our understanding of cell heterogeneity and function as well as tissue architecture. Clinical data analysis focuses on HF phenotyping and prognostic modeling. Big data approaches are increasingly common in HF research. The use of methods designed for big data, such as machine learning, may help elucidate the biology underlying HF. However, important challenges remain in the translation of this knowledge into improvements in clinical care.

摘要

目的综述

本综述旨在总结心力衰竭(HF)研究中大数据分析的现状。我们讨论了大数据在 HF 领域的应用,重点介绍了“组学”和临床数据。我们还讨论了这些数据的一些局限性及其未来的潜力。

最近的发现

组学为 HF 患者的血浆和心肌分子谱提供了深入了解。单细胞和空间技术的引入是一项重大进展,将重塑我们对细胞异质性和功能以及组织架构的理解。临床数据分析侧重于 HF 表型和预后建模。大数据方法在 HF 研究中越来越普遍。机器学习等专为大数据设计的方法的使用,可能有助于阐明 HF 的生物学基础。然而,将这些知识转化为临床护理的改进仍然存在重要挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a9/7496059/71f678080156/11897_2020_469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验