基于足迹的多组学数据功能分析。

Footprint-based functional analysis of multiomic data.

作者信息

Dugourd Aurelien, Saez-Rodriguez Julio

机构信息

Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute of Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany.

RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074, Aachen, Germany.

出版信息

Curr Opin Syst Biol. 2019 Jun;15:82-90. doi: 10.1016/j.coisb.2019.04.002.

Abstract

Omic technologies allow us to generate extensive data, including transcriptomic, proteomic, phosphoproteomic and metabolomic. These data can be used to study signal transduction, gene regulation and metabolism. In this review, we summarise resources and methods to analysis these types of data. We focus on methods developed to recover functional insights using footprints. Footprints are signatures defined by the effect of molecules or processes of interest. They integrate information from multiple measurements whose abundances are under the influence of a common regulator. For example, transcripts controlled by a transcription factor or peptides phosphorylated by a kinase. Footprints can also be generalised across multiple types of omic data. Thus, we also present methods to integrate multiple types of omic data and features (such as the ones derived from footprints) together. We highlight some examples of studies that leverage such approaches to discover new biological mechanisms.

摘要

组学技术使我们能够生成大量数据,包括转录组学、蛋白质组学、磷酸化蛋白质组学和代谢组学数据。这些数据可用于研究信号转导、基因调控和代谢。在本综述中,我们总结了分析这些类型数据的资源和方法。我们重点关注利用足迹来恢复功能见解所开发的方法。足迹是由感兴趣的分子或过程的效应所定义的特征。它们整合了来自多个测量值的信息,这些测量值的丰度受共同调节因子的影响。例如,由转录因子控制的转录本或由激酶磷酸化的肽段。足迹也可以在多种组学数据类型中进行推广。因此,我们还介绍了将多种组学数据类型和特征(如源自足迹的特征)整合在一起的方法。我们重点介绍了一些利用此类方法发现新生物学机制的研究实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/251d/7357600/8c7f5029996b/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索