Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia.
Biochemistry. 2020 Aug 25;59(33):3010-3018. doi: 10.1021/acs.biochem.0c00524. Epub 2020 Aug 12.
Cell membranes contain incredible diversity in the chemical structures of their individual lipid species and the ratios in which these lipids are combined to make membranes. Nevertheless, our current understanding of how each of these components affects the properties of the cell membrane remains elusive, in part due to the difficulties in studying the dynamics of membranes at high spatiotemporal resolution. In this work, we use coarse-grained molecular dynamics simulations to investigate how individual lipid species contribute to the biophysical properties of the neuronal plasma membrane. We progress through eight membranes of increasing chemical complexity, ranging from a simple POPC/CHOL membrane to a previously published neuronal plasma membrane [Ingólfsson, H. I., et al. (2017) (10), 2271-2280] containing 49 distinct lipid species. Our results show how subtle chemical changes can affect the properties of the membrane and highlight the lipid species that give the neuronal plasma membrane its unique biophysical properties. This work has potential far-reaching implications for furthering our understanding of cell membranes.
细胞膜中单个脂质种类的化学结构以及这些脂质组合形成膜的比例存在令人难以置信的多样性。然而,我们目前对于这些成分中的每一种如何影响细胞膜特性的理解仍然难以捉摸,部分原因是由于难以在高时空分辨率下研究膜的动力学。在这项工作中,我们使用粗粒分子动力学模拟来研究单个脂质种类如何有助于神经元质膜的生物物理特性。我们通过从简单的 POPC/CHOL 膜到之前发表的包含 49 种不同脂质种类的神经元质膜[Ingólfsson, H. I., et al. (2017) (10), 2271-2280]的八种化学复杂度不断增加的膜来进行研究。我们的结果表明,微小的化学变化如何影响膜的性质,并突出了赋予神经元质膜独特生物物理特性的脂质种类。这项工作对于进一步了解细胞膜具有深远的意义。