Suppr超能文献

神经疾病中的轴突运输

Axonal transport in neurological disease.

作者信息

Griffin J W, Watson D F

机构信息

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205.

出版信息

Ann Neurol. 1988 Jan;23(1):3-13. doi: 10.1002/ana.410230103.

Abstract

The axonal transport systems have a wide variety of primary roles and secondary responses in neurological disease processes. Recent advances in understanding these roles have built on the increasingly detailed insights into the cell biology of the axon and its supporting cells. Fast transport is a microtubule-based system of bidirectional movement of membranous organelles; the mechanism of translocation of these organelles involves novel proteins, including the recently described protein of fast anterograde transport, kinesin. Slow transport conveys the major cytoskeletal elements, microtubules, and neurofilaments. Several types of structural changes in diseased nerve fibers are understood in terms of underlying transport abnormalities. Altered slow transport of neurofilaments produces changes in axonal caliber (swelling or atrophy) and is involved in some types of perikaryal neurofibrillary abnormality. Secondary changes in slow axonal transport--for example, the reordered synthesis and delivery of cytoskeletal proteins after axotomy--also can produce changes in axonal caliber. Secondary demyelination can be a prominent late consequence of a sustained alteration of neurofilament transport. Impaired fast transport is found in experimental models of distal axonal degeneration (dying back). Retrograde axonal transport provides access to the central nervous system for agents such as polio virus and tetanus toxin, as well as access for known and hypothetical trophic factors. Correlative studies of axonal transport, axonal morphometry, cytoskeletal ultrastructure, and molecular biology of cytoskeletal proteins are providing extremely detailed reconstructions of the pathogenesis of experimental models of neurological disorders. A major challenge lies in the extension of these approaches to clinical studies.

摘要

轴突运输系统在神经疾病过程中具有多种主要作用和次要反应。对这些作用的最新认识建立在对轴突及其支持细胞的细胞生物学日益深入的了解之上。快速运输是一种基于微管的膜性细胞器双向移动系统;这些细胞器的转运机制涉及新的蛋白质,包括最近描述的快速顺向运输蛋白驱动蛋白。慢速运输则输送主要的细胞骨架成分、微管和神经丝。从潜在的运输异常方面可以理解患病神经纤维中的几种结构变化。神经丝慢速运输的改变会导致轴突管径变化(肿胀或萎缩),并参与某些类型的核周神经原纤维异常。轴突慢速运输的继发性变化,例如轴突切断后细胞骨架蛋白合成和运输的重新排序,也会导致轴突管径变化。继发性脱髓鞘可能是神经丝运输持续改变的一个突出的晚期后果。在远端轴突变性(逆行性变性)的实验模型中发现快速运输受损。逆行轴突运输为诸如脊髓灰质炎病毒和破伤风毒素等病原体进入中枢神经系统提供了途径,同时也为已知和假设的营养因子提供了进入途径。对轴突运输、轴突形态测量、细胞骨架超微结构以及细胞骨架蛋白分子生物学的相关性研究,正在极其详细地重构神经疾病实验模型的发病机制。一个主要挑战在于将这些方法扩展到临床研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验