Suppr超能文献

使用包含元数据和未知父群的 BLUP 和 SSGBLUP 对奶绵羊进行评估的偏差和准确性。

Bias and accuracy of dairy sheep evaluations using BLUP and SSGBLUP with metafounders and unknown parent groups.

机构信息

GenPhySE, INRAE, 31326, Castanet Tolosan, France.

Facultad de Veterinaria, UdelaR, A. Lasplaces 1620, Montevideo, Uruguay.

出版信息

Genet Sel Evol. 2020 Aug 12;52(1):47. doi: 10.1186/s12711-020-00567-1.

Abstract

BACKGROUND

Bias has been reported in genetic or genomic evaluations of several species. Common biases are systematic differences between averages of estimated and true breeding values, and their over- or under-dispersion. In addition, comparing accuracies of pedigree versus genomic predictions is a difficult task. This work proposes to analyse biases and accuracies in the genetic evaluation of milk yield in Manech Tête Rousse dairy sheep, over several years, by testing five models and using the estimators of the linear regression method. We tested models with and without genomic information [best linear unbiased prediction (BLUP) and single-step genomic BLUP (SSGBLUP)] and using three strategies to handle missing pedigree [unknown parent groups (UPG), UPG with QP transformation in the [Formula: see text] matrix (EUPG) and metafounders (MF)].

METHODS

We compared estimated breeding values (EBV) of selected rams at birth with the EBV of the same rams obtained each year from the first daughters with phenotypes up to 2017. We compared within and across models. Finally, we compared EBV at birth of the rams with and without genomic information.

RESULTS

Within models, bias and over-dispersion were small (bias: 0.20 to 0.40 genetic standard deviations; slope of the dispersion: 0.95 to 0.99) except for model SSGBLUP-EUPG that presented an important over-dispersion (0.87). The estimates of accuracies confirm that the addition of genomic information increases the accuracy of EBV in young rams. The smallest bias was observed with BLUP-MF and SSGBLUP-MF. When we estimated dispersion by comparing a model with no markers to models with markers, SSGBLUP-MF showed a value close to 1, indicating that there was no problem in dispersion, whereas SSGBLUP-EUPG and SSGBLUP-UPG showed a significant under-dispersion. Another important observation was the heterogeneous behaviour of the estimates over time, which suggests that a single check could be insufficient to make a good analysis of genetic/genomic evaluations.

CONCLUSIONS

The addition of genomic information increases the accuracy of EBV of young rams in Manech Tête Rousse. In this population that has missing pedigrees, the use of UPG and EUPG in SSGBLUP produced bias, whereas MF yielded unbiased estimates, and we recommend its use. We also recommend assessing biases and accuracies using multiple truncation points, since these statistics are subject to random variation across years.

摘要

背景

在多个物种的遗传或基因组评估中,已经报道了存在偏差。常见的偏差是估计和真实育种值平均值之间的系统差异,以及它们的过度或不足分散。此外,比较系谱预测和基因组预测的准确性是一项艰巨的任务。本工作通过测试五个模型和使用线性回归方法的估计器,分析了多年来在曼尼奇特鲁塞奶牛中的产奶量遗传评估中的偏差和准确性。我们测试了具有和不具有基因组信息的模型[最佳线性无偏预测(BLUP)和单步基因组 BLUP(SSGBLUP)],并使用三种策略来处理系谱缺失[未知亲本组(UPG)、在[公式:见文本]矩阵中进行 QP 转换的 UPG(EUPG)和元祖先(MF)]。

方法

我们将选择的公羊出生时的估计育种值(EBV)与从具有表型的第一只母羊中每年获得的同一公羊的 EBV 进行了比较,直到 2017 年。我们在模型内和跨模型进行了比较。最后,我们比较了有和没有基因组信息的公羊出生时的 EBV。

结果

在模型内,偏差和过度分散很小(偏差:0.20 到 0.40 个遗传标准差;分散斜率:0.95 到 0.99),除了 SSGBLUP-EUPG 模型,该模型显示出重要的过度分散(0.87)。准确性的估计证实,添加基因组信息会增加年轻公羊 EBV 的准确性。BLUP-MF 和 SSGBLUP-MF 观察到的偏差最小。当我们通过比较没有标记的模型与有标记的模型来估计分散时,SSGBLUP-MF 显示出接近 1 的值,表明分散没有问题,而 SSGBLUP-EUPG 和 SSGBLUP-UPG 显示出显著的不足分散。另一个重要的观察是,随着时间的推移,估计值的表现出不均匀性,这表明单次检查可能不足以对遗传/基因组评估进行良好的分析。

结论

在曼尼奇特鲁塞奶牛中,添加基因组信息会增加年轻公羊 EBV 的准确性。在这个存在系谱缺失的群体中,在 SSGBLUP 中使用 UPG 和 EUPG 会产生偏差,而 MF 则产生无偏差的估计值,因此我们建议使用 MF。我们还建议使用多个截断点来评估偏差和准确性,因为这些统计数据在多年内会受到随机变化的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed6/7425573/636f52b60f2d/12711_2020_567_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验