Suppr超能文献

一种基于微纤维支架的阿尔茨海默病三维体外人类神经元培养模型。

A microfiber scaffold-based 3D in vitro human neuronal culture model of Alzheimer's disease.

作者信息

Ranjan Vivek Damodar, Qiu Lifeng, Lee Jolene Wei-Ling, Chen Xuelong, Jang Se Eun, Chai Chou, Lim Kah-Leong, Tan Eng-King, Zhang Yilei, Huang Wei Min, Zeng Li

机构信息

NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Biomater Sci. 2020 Sep 7;8(17):4861-4874. doi: 10.1039/d0bm00833h. Epub 2020 Aug 13.

Abstract

Increasing evidence indicates superiority of three-dimensional (3D) in vitro cell culture systems over conventional two-dimensional (2D) monolayer cultures in mimicking native in vivo microenvironments. Tissue-engineered 3D culture models combined with stem cell technologies have advanced Alzheimer's disease (AD) pathogenesis studies. However, existing 3D neuronal models of AD overexpress mutant genes or have heterogeneities in composition, biological properties and cell differentiation stages. Here, we encapsulate patient induced pluripotent stem cell (iPSC) derived neural progenitor cells (NPC) in poly(lactic-co-glycolic acid) (PLGA) microtopographic scaffolds fabricated via wet electrospinning to develop a novel 3D culture model of AD. First, we enhanced cellular infiltration and distribution inside the scaffold by optimizing various process parameters such as fiber diameter, pore size, porosity and hydrophilicity. Next, we compared key neural stem cell features including viability, proliferation and differentiation in 3D culture with 2D monolayer controls. The 3D microfibrous substrate reduces cell proliferation and significantly accelerates neuronal differentiation within seven days of culture. Furthermore, 3D culture spontaneously enhanced pathogenic amyloid-beta 42 (Aβ42) and phospho-tau levels in differentiated neurons carrying familial AD (FAD) mutations, compared with age-matched healthy controls. Overall, our tunable scaffold-based 3D neuronal culture platform serves as a suitable in vitro model that robustly recapitulates and accelerates the pathogenic characteristics of FAD-iPSC derived neurons.

摘要

越来越多的证据表明,在模拟天然体内微环境方面,三维(3D)体外细胞培养系统优于传统的二维(2D)单层培养。结合干细胞技术的组织工程3D培养模型推动了阿尔茨海默病(AD)发病机制的研究。然而,现有的AD 3D神经元模型要么过表达突变基因,要么在组成、生物学特性和细胞分化阶段存在异质性。在此,我们将患者诱导多能干细胞(iPSC)来源的神经祖细胞(NPC)封装在通过湿法静电纺丝制备的聚乳酸-乙醇酸共聚物(PLGA)微地形支架中,以建立一种新型的AD 3D培养模型。首先,我们通过优化各种工艺参数,如纤维直径、孔径、孔隙率和亲水性,增强了细胞在支架内的浸润和分布。接下来,我们将3D培养中关键的神经干细胞特征,包括活力、增殖和分化,与2D单层对照进行了比较。3D微纤维基质在培养7天内降低了细胞增殖,并显著加速了神经元分化。此外,与年龄匹配的健康对照相比,3D培养自发地增强了携带家族性AD(FAD)突变的分化神经元中致病性淀粉样β蛋白42(Aβ42)和磷酸化tau蛋白的水平。总体而言,我们基于可调谐支架的3D神经元培养平台是一个合适的体外模型,能够有力地重现并加速FAD-iPSC来源神经元的致病特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验