Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.
J Phys Chem B. 2020 Sep 10;124(36):7819-7829. doi: 10.1021/acs.jpcb.0c03368. Epub 2020 Aug 31.
Plasma membranes (PMs) contain hundreds of different lipid species that contribute differently to overall bilayer properties. By modulation of these properties, membrane protein function can be affected. Furthermore, inhomogeneous lipid mixing and domains of lipid enrichment/depletion can sort proteins and provide optimal local environments. Recent coarse-grained (CG) Martini molecular dynamics efforts have provided glimpses into lipid organization of different PMs: an "Average" and a "Brain" PM. Their high complexity and large size require long simulations (∼80 μs) for proper sampling. Thus, these simulations are computationally taxing. This level of complexity is beyond the possibilities of all-atom simulations, raising the question-what complexity is needed for "realistic" bilayer properties? We constructed CG Martini PM models of varying complexity (63 down to 8 different lipids). Lipid tail saturations and headgroup combinations were kept as consistent as possible for the "tissues'" (Average/Brain) at three levels of compositional complexity. For each system, we analyzed membrane properties to evaluate which features can be retained at lower complexity and validate eight-component bilayers that can act as reliable mimetics for Average or Brain PMs. Systems of reduced complexity deliver a more robust and malleable tool for computational membrane studies and allow for equivalent all-atom simulations and experiments.
质膜(PM)包含数百种不同的脂质种类,它们对整体双层性质的贡献不同。通过调节这些性质,可以影响膜蛋白的功能。此外,脂质不均匀混合和脂质富集/耗尽区域可以对蛋白质进行分类,并提供最佳的局部环境。最近的粗粒(CG)Martini 分子动力学研究提供了对不同 PM 脂质组织的初步了解:“平均”和“大脑”PM。它们的高复杂性和大尺寸需要进行长时间的模拟(约 80μs)才能正确采样。因此,这些模拟计算量很大。这种复杂程度超出了全原子模拟的可能性,提出了一个问题——“真实”双层性质需要达到什么复杂程度?我们构建了不同复杂程度的 CG Martini PM 模型(从 63 种减少到 8 种不同的脂质)。对于三种组成复杂性水平的“组织”(平均/大脑),我们尽可能保持脂质尾部饱和度和头部基团组合的一致性。对于每个系统,我们分析了膜性质以评估哪些特征可以在较低的复杂性下保留,并验证了可以作为平均或大脑 PM 可靠模拟物的八组分双层。简化的系统为计算膜研究提供了更稳健和可塑的工具,并允许进行等效的全原子模拟和实验。