Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
J Mater Chem B. 2020 Sep 23;8(36):8356-8367. doi: 10.1039/d0tb01526a.
The integration of advanced diagnostic contrast agents with versatile therapeutic drugs is an effective method for cancer treatment. However, combining various biocompatible theranostic modalities into a single platform at the nanoscale is a challenging assignment. In this work, we report a simple chemical synthetic route for producing a homogeneous hybrid nanoflower shaped morphology based on Au@Mn3O4 magneto-plasmonic nanomaterials. The synthetic mechanism of the nanoflowers is well-matched with the heteroepitaxial growth phenomena by which the nano-petals of Mn3O4 generated on the surface of the Au core. The food and drug administration (FDA) in the USA approved the use of triblock polymer Pluronic F-127 to enhance the biocompatibility of Au@Mn3O4 hybrid nanoflowers. The prepared hybrid nanoflowers produce a significant photothermal heating effect with a thermal transduction efficiency of 38%, comparable to the nanorods and nanoparticles of gold (Au). The hybrid junction reveals promising optical and magnetic properties and the prepared Au@Mn3O4 nanoflowers not only exhibit strong near-infrared (NIR) absorption to produce excellent photothermal efficacy under irradiation with an 808 nm NIR laser, but also demonstrate a significant T1-weighted magnetic resonance (MR) image enhancement in vitro and in vivo. The histopathology assessments indicate only negligible toxicity of the nanoflowers to major organs. Therefore, the hybrid Au@Mn3O4 nanoflowers exhibit great potential in T1-weighted MR-imaging and photothermal therapy, opening up new possibilities for synthesizing novel bio-compatible, homogeneous, and shape controllable nanostructures with multifunctional applications.
将先进的诊断造影剂与多功能治疗药物相结合是癌症治疗的有效方法。然而,将各种生物相容的治疗模式结合到纳米级的单个平台中是一项具有挑战性的任务。在这项工作中,我们报告了一种简单的化学合成方法,用于制备基于 Au@Mn3O4 磁等离子体纳米材料的均匀混合纳米花状形态。纳米花的合成机制与异质外延生长现象很好地匹配,即 Mn3O4 的纳米花瓣在 Au 核的表面上生成。美国食品和药物管理局 (FDA) 已批准使用嵌段共聚物 Pluronic F-127 来提高 Au@Mn3O4 杂化纳米花的生物相容性。所制备的杂化纳米花产生了显著的光热加热效应,热传递效率为 38%,可与金 (Au) 的纳米棒和纳米颗粒相媲美。杂化结显示出有前途的光学和磁性特性,所制备的 Au@Mn3O4 纳米花不仅在 808nm 近红外 (NIR) 激光照射下表现出强烈的近红外 (NIR) 吸收,从而产生优异的光热效果,而且还在体外和体内表现出显著的 T1 加权磁共振 (MR) 图像增强。组织病理学评估表明纳米花对主要器官的毒性可以忽略不计。因此,杂化 Au@Mn3O4 纳米花在 T1 加权磁共振成像和光热治疗方面具有巨大的潜力,为合成具有多功能应用的新型生物相容、均匀和形状可控的纳米结构开辟了新的可能性。
J Biomed Nanotechnol. 2017-4
ACS Appl Mater Interfaces. 2021-3-10
Molecules. 2024-11-26
Nanomaterials (Basel). 2022-4-16
Front Oncol. 2021-10-13