Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
Genes (Basel). 2020 Aug 11;11(8):921. doi: 10.3390/genes11080921.
Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.
尽管化疗和免疫疗法的出现限制了癌细胞的持续和不受控制的增殖,但目前可用的治疗药物与高毒性水平和低成功率相关。此外,由于原癌基因和肿瘤抑制基因不断出现和进化的突变,持续的多靶向治疗仅适用于少数致癌途径。CRISPR/Cas9 作为一种特定的基因编辑工具,可用于最小毒性地纠正致病突变,但也可作为免疫疗法的辅助手段,以实现更强大的免疫反应。CRISPR/Cas9 技术的一些最关键的限制包括脱靶突变,导致在原间隔相邻基序 (PAM) 上游的 DNA 产生非特异性限制,以及伦理协议和缺乏旨在评估风险的科学共识。目前,CRISPR/Cas9 正在动物模型上进行测试,以提高基因组编辑的特异性并诱导更强的抗肿瘤反应。此外,正在进行的临床试验使用 CRISPR/Cas9 系统在免疫细胞中靶向特定方式修饰基因组。最近,已经设计了无错误的体外系统来克服该基因编辑系统的限制。本文的目的是介绍使用 CRISPR Cas9 技术靶向治疗耐药性癌症的知识。此外,CRISPR/Cas9 的使用作为目前在实验肿瘤学中使用的免疫疗法的新兴补充,得到了辅助。进一步展示了 CRISPR/Cas9 技术在动物模型和人类临床试验中的应用和进展。最后,提供了基因编辑工具的局限性概述。
Genes (Basel). 2020-8-11
Cancer Treat Res Commun. 2021
Protein Pept Lett. 2020
Technol Cancer Res Treat. 2022
Brief Funct Genomics. 2019-3-22
Mol Biol Rep. 2022-7
Future Oncol. 2018-7-20
Mol Cancer. 2022-2-21
Front Drug Deliv. 2024-8-8
Heliyon. 2024-10-20
Mol Diagn Ther. 2024-1
Integr Psychol Behav Sci. 2024-6
Genes (Basel). 2023-1-2
Cancers (Basel). 2023-1-6
J Transl Med. 2022-11-18
Cancer Drug Resist. 2019
Signal Transduct Target Ther. 2020-1-3
J Mol Med (Berl). 2020-5
J Cell Mol Med. 2020-4
Int J Mol Sci. 2020-2-7
Acta Pharm Sin B. 2020-1
Front Immunol. 2019-12-11
Oncotarget. 2019-12-17