Suppr超能文献

基于自动编码器方案的深度卷积生成对抗网络的剩余使用寿命估计。

Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme.

机构信息

College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Comput Intell Neurosci. 2020 Aug 1;2020:9601389. doi: 10.1155/2020/9601389. eCollection 2020.

Abstract

Accurate predictions of remaining useful life (RUL) of important components play a crucial role in system reliability, which is the basis of prognostics and health management (PHM). This paper proposed an integrated deep learning approach for RUL prediction of a turbofan engine by integrating an autoencoder (AE) with a deep convolutional generative adversarial network (DCGAN). In the pretraining stage, the reconstructed data of the AE not only participate in its error reconstruction but also take part in the DCGAN parameter training as the generated data of the DCGAN. Through double-error reconstructions, the capability of feature extraction is enhanced, and high-level abstract information is obtained. In the fine-tuning stage, a long short-term memory (LSTM) network is used to extract the sequential information from the features to predict the RUL. The effectiveness of the proposed scheme is verified on the NASA commercial modular aero-propulsion system simulation (C-MAPSS) dataset. The superiority of the proposed method is demonstrated via excellent prediction performance and comparisons with other existing state-of-the-art prognostics. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising prediction approach and an efficient feature extraction scheme.

摘要

准确预测重要部件的剩余使用寿命 (RUL) 在系统可靠性中起着至关重要的作用,这是预测与健康管理 (PHM) 的基础。本文提出了一种通过将自动编码器 (AE) 与深度卷积生成对抗网络 (DCGAN) 集成来进行涡轮风扇发动机 RUL 预测的综合深度学习方法。在预训练阶段,AE 的重构数据不仅参与其误差重构,还作为 DCGAN 的生成数据参与 DCGAN 参数训练。通过双重误差重构,增强了特征提取能力,并获得了高级抽象信息。在微调阶段,长短期记忆 (LSTM) 网络用于从特征中提取序列信息以预测 RUL。该方案的有效性在 NASA 商用模块化航空推进系统仿真 (C-MAPSS) 数据集上得到了验证。通过出色的预测性能和与其他现有最先进的预测方法的比较,证明了该方法的优越性。本研究的结果表明,所提出的数据驱动预测方法提供了一种新的有前途的预测方法和有效的特征提取方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/7416243/87c8f375dc9d/CIN2020-9601389.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验