Suppr超能文献

一种训练肺部结节 AI 诊断模型的简单方法。

A Simple Method to Train the AI Diagnosis Model of Pulmonary Nodules.

机构信息

Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China.

出版信息

Comput Math Methods Med. 2020 Aug 1;2020:2812874. doi: 10.1155/2020/2812874. eCollection 2020.

Abstract

BACKGROUND

The differential diagnosis of subcentimetre lung nodules with a diameter of less than 1 cm has always been one of the problems of imaging doctors and thoracic surgeons. We plan to create a deep learning model for the diagnosis of pulmonary nodules in a simple method.

METHODS

Image data and pathological diagnosis of patients come from the First Affiliated Hospital of Zhejiang University School of Medicine from October 1, 2016, to October 1, 2019. After data preprocessing and data augmentation, the training set is used to train the model. The test set is used to evaluate the trained model. At the same time, the clinician will also diagnose the test set.

RESULTS

A total of 2,295 images of 496 lung nodules and their corresponding pathological diagnosis were selected as a training set and test set. After data augmentation, the number of training set images reached 12,510 images, including 6,648 malignant nodular images and 5,862 benign nodular images. The area under the - curve of the trained model is 0.836 in the classification of malignant and benign nodules. The area under the ROC curve of the trained model is 0.896 (95% CI: 78.96%~100.18%), which is higher than that of three doctors. However, the value is not less than 0.05.

CONCLUSION

With the help of an automatic machine learning system, clinicians can create a deep learning pulmonary nodule pathology classification model without the help of deep learning experts. The diagnostic efficiency of this model is not inferior to that of the clinician.

摘要

背景

直径小于 1cm 的亚厘米肺结节的鉴别诊断一直是影像科医生和胸外科医生面临的问题之一。我们计划采用一种简单的方法为肺结节创建一个深度学习模型。

方法

图像数据和患者的病理诊断来自于 2016 年 10 月 1 日至 2019 年 10 月 1 日浙江大学医学院第一附属医院。在数据预处理和数据扩充后,使用训练集来训练模型。使用测试集来评估训练好的模型。同时,临床医生也会对测试集进行诊断。

结果

共选择了 496 个肺结节的 2295 张图像及其相应的病理诊断作为训练集和测试集。经过数据扩充,训练集的图像数量达到了 12510 张,其中恶性结节图像 6648 张,良性结节图像 5862 张。训练模型在良恶性结节分类中的曲线下面积为 0.836。训练模型的 ROC 曲线下面积为 0.896(95%CI:78.96%~100.18%),高于三位医生的诊断效能。但 值均不小于 0.05。

结论

在自动机器学习系统的帮助下,临床医生无需深度学习专家的帮助就可以创建深度学习肺结节病理分类模型。该模型的诊断效率不低于临床医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee7f/7416225/6032bdc07fd3/CMMM2020-2812874.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验