文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于小 SE-ResNet 模块的卷积神经网络在乳腺癌病理图像分类中的应用。

Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module.

机构信息

College of Computer Science and Engineering, Northwest Normal University, 730070, Lanzhou Gansu, P.R.China.

出版信息

PLoS One. 2019 Mar 29;14(3):e0214587. doi: 10.1371/journal.pone.0214587. eCollection 2019.


DOI:10.1371/journal.pone.0214587
PMID:30925170
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6440620/
Abstract

Although successful detection of malignant tumors from histopathological images largely depends on the long-term experience of radiologists, experts sometimes disagree with their decisions. Computer-aided diagnosis provides a second option for image diagnosis, which can improve the reliability of experts' decision-making. Automatic and precision classification for breast cancer histopathological image is of great importance in clinical application for identifying malignant tumors from histopathological images. Advanced convolution neural network technology has achieved great success in natural image classification, and it has been used widely in biomedical image processing. In this paper, we design a novel convolutional neural network, which includes a convolutional layer, small SE-ResNet module, and fully connected layer. We propose a small SE-ResNet module which is an improvement on the combination of residual module and Squeeze-and-Excitation block, and achieves the similar performance with fewer parameters. In addition, we propose a new learning rate scheduler which can get excellent performance without complicatedly fine-tuning the learning rate. We use our model for the automatic classification of breast cancer histology images (BreakHis dataset) into benign and malignant and eight subtypes. The results show that our model achieves the accuracy between 98.87% and 99.34% for the binary classification and achieve the accuracy between 90.66% and 93.81% for the multi-class classification.

摘要

虽然从组织病理学图像中成功检测恶性肿瘤在很大程度上取决于放射科医生的长期经验,但专家有时也会对他们的决策存在分歧。计算机辅助诊断为图像诊断提供了第二个选择,这可以提高专家决策的可靠性。乳腺癌组织病理学图像的自动和精确分类在临床应用中对于从组织病理学图像中识别恶性肿瘤具有重要意义。先进的卷积神经网络技术在自然图像分类方面取得了巨大成功,并已广泛应用于生物医学图像处理。在本文中,我们设计了一种新的卷积神经网络,它包括卷积层、小 SE-ResNet 模块和全连接层。我们提出了一个小的 SE-ResNet 模块,这是对残差模块和 Squeeze-and-Excitation 块组合的改进,并且可以用更少的参数实现相似的性能。此外,我们提出了一种新的学习率调度器,它可以在不复杂地微调学习率的情况下获得优异的性能。我们使用我们的模型对乳腺癌组织学图像(BreakHis 数据集)进行自动分类,分为良性和恶性以及八个亚型。结果表明,我们的模型在二分类中达到了 98.87%至 99.34%的准确率,在多分类中达到了 90.66%至 93.81%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/886158a9b158/pone.0214587.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/3c4458f4559f/pone.0214587.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/ed90486ad746/pone.0214587.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/0b8714895556/pone.0214587.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/328aae193349/pone.0214587.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/a620a3121f7f/pone.0214587.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/e375b7234148/pone.0214587.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/0daa8ea42c0a/pone.0214587.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/886158a9b158/pone.0214587.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/3c4458f4559f/pone.0214587.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/ed90486ad746/pone.0214587.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/0b8714895556/pone.0214587.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/328aae193349/pone.0214587.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/a620a3121f7f/pone.0214587.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/e375b7234148/pone.0214587.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/0daa8ea42c0a/pone.0214587.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/392a/6440620/886158a9b158/pone.0214587.g008.jpg

相似文献

[1]
Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module.

PLoS One. 2019-3-29

[2]
Spectral-Spatial Features Integrated Convolution Neural Network for Breast Cancer Classification.

Sensors (Basel). 2020-8-22

[3]
Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning.

Comput Methods Programs Biomed. 2022-8

[4]
Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms.

Med Phys. 2021-7

[5]
Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering.

Biomed Res Int. 2018-3-7

[6]
Second-order asymmetric convolution network for breast cancer histopathology image classification.

J Biophotonics. 2022-5

[7]
A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.

Med Phys. 2022-9

[8]
Breast cancer pathological image classification based on deep learning.

J Xray Sci Technol. 2020

[9]
Breast cancer histopathological image classification using a hybrid deep neural network.

Methods. 2019-6-15

[10]
Convolutional neural network with parallel convolution scale attention module and ResCBAM for breast histology image classification.

Heliyon. 2024-5-8

引用本文的文献

[1]
Efficient quality control of platelet-rich plasma preparation using computer vision and deep learning.

J Biomed Opt. 2025-6

[2]
Deep learning model for grading carcinoma with Gini-based feature selection and linear production-inspired feature fusion.

Sci Rep. 2025-7-1

[3]
FPGA implementation of deep learning architecture for ankylosing spondylitis detection from MRI.

Sci Rep. 2025-7-1

[4]
A review of lightweight convolutional neural networks for ultrasound signal classification.

Front Physiol. 2025-4-24

[5]
Enhancing Burn Diagnosis through SE-ResNet18 and Confidence Filtering.

J Imaging Inform Med. 2025-4-8

[6]
Transfer Learning-Based Integration of Dual Imaging Modalities for Enhanced Classification Accuracy in Confocal Laser Endomicroscopy of Lung Cancer.

Cancers (Basel). 2025-2-11

[7]
Refining breast cancer classification: Customized attention integration approaches with dense and residual networks for enhanced detection.

Digit Health. 2025-1-6

[8]
Invasive carcinoma segmentation in whole slide images using MS-ResMTUNet.

Heliyon. 2024-2-19

[9]
Multi-classification of breast cancer pathology images based on a two-stage hybrid network.

J Cancer Res Clin Oncol. 2024-11-18

[10]
Enhancing Open-World Bacterial Raman Spectra Identification by Feature Regularization for Improved Resilience against Unknown Classes.

Chem Biomed Imaging. 2024-5-6

本文引用的文献

[1]
The transition module: a method for preventing overfitting in convolutional neural networks.

Comput Methods Biomech Biomed Eng Imaging Vis. 2019

[2]
Calcifications at Digital Breast Tomosynthesis: Imaging Features and Biopsy Techniques.

Radiographics. 2019-1-25

[3]
Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model.

Sci Rep. 2017-6-23

[4]
Classification of breast cancer histology images using Convolutional Neural Networks.

PLoS One. 2017-6-1

[5]
Automatic prediction of tumour malignancy in breast cancer with fractal dimension.

R Soc Open Sci. 2016-12-7

[6]
Cancer Statistics, 2017.

CA Cancer J Clin. 2017-1-5

[7]
A Dataset for Breast Cancer Histopathological Image Classification.

IEEE Trans Biomed Eng. 2016-7

[8]
Deep learning.

Nature. 2015-5-28

[9]
Comprehensive molecular portraits of human breast tumours.

Nature. 2012-9-23

[10]
A comparison of MCC and CEN error measures in multi-class prediction.

PLoS One. 2012-8-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索