Suppr超能文献

正则化逻辑回归和随机森林机器学习模型在日间阻塞性睡眠呼吸暂停诊断中的比较。

A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea.

机构信息

Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada.

Department of Statistics, University of Manitoba, Winnipeg, Canada.

出版信息

Med Biol Eng Comput. 2020 Oct;58(10):2517-2529. doi: 10.1007/s11517-020-02206-9. Epub 2020 Aug 17.

Abstract

A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications' purposes. Graphical Abstract.

摘要

在大数据和高维数据分析中,一个主要的挑战是通过刻画特征因素与预测因子之间的关系,对感兴趣的变量进行分类和预测。本研究旨在评估两种重要的机器学习技术在使用日间气管呼吸音对阻塞性睡眠呼吸暂停(OSA)患者进行分类中的效用。我们评估和比较了随机森林(RF)和正则化逻辑回归(LR)作为特征选择工具和分类方法在清醒 OSA 筛查中的性能。结果表明,RF 作为一种低方差的基于委员会的方法,在盲测准确性、特异性和敏感性方面均优于正则化 LR,分别提高了 3.5%、2.4%和 3.7%。然而,正则化 LR 比 RF 更快,并且产生了更简洁的模型。因此,RF 和正则化 LR 的特征降维和分类方法都有资格应用于日间 OSA 筛查研究,具体取决于数据的性质和应用目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验