Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany.
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
Angew Chem Int Ed Engl. 2020 Dec 14;59(51):23025-23029. doi: 10.1002/anie.202009800. Epub 2020 Oct 13.
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
RNA 的结构和柔韧性高度依赖于微环境。我们使用脉冲电子-电子双共振(PELDOR)/双电子-电子共振(DEER)光谱学结合先进的标记技术,证明双链 RNA(dsRNA)在被 Xenopus laevis 卵母细胞内化后结构会发生变化。与稀溶液相比,细胞内的 dsRNA A 螺旋更加紧凑。我们在密集拥挤的蛋白质溶液中再现了这种紧凑性。dsRNA 的原子分辨率分子动力学模拟定量捕获了这种紧凑性,并确定蛋白质和 dsRNA 之间的非特异性静电相互作用可能是这种效应的驱动力。