Suppr超能文献

氢气吸入减轻失血性休克大鼠内皮糖萼损伤并稳定血液动力学。

Hydrogen Gas Inhalation Attenuates Endothelial Glycocalyx Damage and Stabilizes Hemodynamics in a Rat Hemorrhagic Shock Model.

机构信息

Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan.

The Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan.

出版信息

Shock. 2020 Sep;54(3):377-385. doi: 10.1097/SHK.0000000000001459.

Abstract

BACKGROUND

Hydrogen gas (H2) inhalation during hemorrhage stabilizes post-resuscitation hemodynamics, improving short-term survival in a rat hemorrhagic shock and resuscitation (HS/R) model. However, the underlying molecular mechanism of H2 in HS/R is unclear. Endothelial glycocalyx (EG) damage causes hemodynamic failure associated with HS/R. In this study, we tested the hypothesis that H2 alleviates oxidative stress by suppressing xanthine oxidoreductase (XOR) and/or preventing tumor necrosis factor-alfa (TNF-α)-mediated syndecan-1 shedding during EG damage.

METHODS

HS/R was induced in rats by reducing mean arterial pressure (MAP) to 35 mm Hg for 60 min followed by resuscitation. Rats inhaled oxygen or H2 + oxygen after achieving shock either in the presence or absence of an XOR inhibitor (XOR-I) for both the groups. In a second test, rats received oxygen alone or antitumor necrosis factor (TNF)-α monoclonal antibody with oxygen or H2. Two hours after resuscitation, XOR activity, purine metabolites, cytokines, syndecan-1 were measured and survival rates were assessed 6 h after resuscitation.

RESULTS

H2 and XOR-I both suppressed MAP reduction and improved survival rates. H2 did not affect XOR activity and the therapeutic effects of XOR-I and H2 were additive. H2 suppressed plasma TNF-α and syndecan-1 expression; however, no additional H2 therapeutic effect was observed in the presence of anti-TNF-α monoclonal antibody.

CONCLUSIONS

H2 inhalation after shock stabilized hemodynamics and improved survival rates in an HS/R model independent of XOR. The therapeutic action of H2 was partially mediated by inhibition of TNF-α-dependent syndecan-1 shedding.

摘要

背景

在出血期间吸入氢气(H2)可稳定复苏后血液动力学,改善大鼠失血性休克和复苏(HS/R)模型的短期存活率。 然而,HS/R 中 H2 的潜在分子机制尚不清楚。 内皮糖萼(EG)损伤导致与 HS/R 相关的血液动力学衰竭。 在这项研究中,我们检验了这样一个假设,即 H2 通过抑制黄嘌呤氧化还原酶(XOR)和/或防止肿瘤坏死因子-α(TNF-α)介导的硫酸乙酰肝素聚糖-1(syndecan-1)脱落来减轻氧化应激EG 损伤。

方法

通过将平均动脉压(MAP)降低至 35mmHg 60分钟来诱导 HS/R,然后进行复苏。 在休克后,大鼠分别在存在或不存在 XOR 抑制剂(XOR-I)的情况下,吸入氧气或 H2 +氧气。 在第二个测试中,大鼠仅接受氧气或抗肿瘤坏死因子(TNF)-α单克隆抗体与氧气或 H2。 复苏后 2 小时,测量 XOR 活性、嘌呤代谢物、细胞因子和硫酸乙酰肝素聚糖-1,并在复苏后 6 小时评估存活率。

结果

H2 和 XOR-I 均抑制 MAP 降低并提高存活率。 H2 不影响 XOR 活性,并且 XOR-I 和 H2 的治疗效果具有加性。 H2 抑制血浆 TNF-α和硫酸乙酰肝素聚糖-1表达; 然而,在存在抗 TNF-α单克隆抗体的情况下,未观察到 H2 的额外治疗效果。

结论

休克后吸入 H2 可稳定 HS/R 模型中的血液动力学并提高存活率,而与 XOR 无关。 H2 的治疗作用部分是通过抑制 TNF-α依赖性硫酸乙酰肝素聚糖-1脱落介导的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验