Suppr超能文献

三维打印模具在影像引导手术活检中的应用:一个开源计算平台。

Three-Dimensional Printed Molds for Image-Guided Surgical Biopsies: An Open Source Computational Platform.

机构信息

Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.

Department of Radiology, University of Cambridge, Cambridge, United Kingdom.

出版信息

JCO Clin Cancer Inform. 2020 Aug;4:736-748. doi: 10.1200/CCI.20.00026.

Abstract

PURPOSE

Spatial heterogeneity of tumors is a major challenge in precision oncology. The relationship between molecular and imaging heterogeneity is still poorly understood because it relies on the accurate coregistration of medical images and tissue biopsies. Tumor molds can guide the localization of biopsies, but their creation is time consuming, technologically challenging, and difficult to interface with routine clinical practice. These hurdles have so far hindered the progress in the area of multiscale integration of tumor heterogeneity data.

METHODS

We have developed an open-source computational framework to automatically produce patient-specific 3-dimensional-printed molds that can be used in the clinical setting. Our approach achieves accurate coregistration of sampling location between tissue and imaging, and integrates seamlessly with clinical, imaging, and pathology workflows.

RESULTS

We applied our framework to patients with renal cancer undergoing radical nephrectomy. We created personalized molds for 6 patients, obtaining Dice similarity coefficients between imaging and tissue sections ranging from 0.86 to 0.96 for tumor regions and between 0.70 and 0.76 for healthy kidneys. The framework required minimal manual intervention, producing the final mold design in just minutes, while automatically taking into account clinical considerations such as a preference for specific cutting planes.

CONCLUSION

Our work provides a robust and automated interface between imaging and tissue samples, enabling the development of clinical studies to probe tumor heterogeneity on multiple spatial scales.

摘要

目的

肿瘤的空间异质性是精准肿瘤学的主要挑战。由于依赖于医学图像和组织活检的精确配准,分子异质性和成像异质性之间的关系仍未得到很好的理解。肿瘤模具可以指导活检的定位,但它们的创建既耗时、技术上具有挑战性,又难以与常规临床实践相结合。这些障碍迄今为止阻碍了肿瘤异质性数据多尺度整合领域的进展。

方法

我们开发了一个开源计算框架,可以自动生成可在临床环境中使用的患者特异性三维打印模具。我们的方法实现了组织和成像之间采样位置的精确配准,并与临床、成像和病理学工作流程无缝集成。

结果

我们将我们的框架应用于接受根治性肾切除术的肾癌患者。我们为 6 名患者创建了个性化模具,获得了肿瘤区域的成像和组织切片之间的骰子相似系数(Dice similarity coefficient)为 0.86 到 0.96,健康肾脏的系数为 0.70 到 0.76。该框架需要最少的手动干预,只需几分钟即可生成最终的模具设计,同时自动考虑了特定切割平面等临床偏好等因素。

结论

我们的工作为成像和组织样本之间提供了一个强大且自动化的接口,使开发可以在多个空间尺度上探测肿瘤异质性的临床研究成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验