Suppr超能文献

使用潜在变量的重复测量方差分析来分析对比中的个体间差异。

Repeated Measures ANOVA with Latent Variables to Analyze Interindividual Differences in Contrasts.

作者信息

Langenberg Benedikt, Helm Jonathan L, Mayer Axel

机构信息

RWTH Aachen University.

San Diego State University.

出版信息

Multivariate Behav Res. 2022 Jan-Feb;57(1):2-19. doi: 10.1080/00273171.2020.1803038. Epub 2020 Aug 17.

Abstract

Repeated measures analysis of variance (RM-ANOVA) is a broadly used statistical method to analyze data from experimental designs. RM-ANOVA aims at investigating effects of experimental conditions (i.e., factors) and predictors that affect the outcome of interest. It mainly considers contrasts that test standard main and interaction effects, even though more complex contrasts can in principle be used. Analyses, however, only focus on drawing conclusions about average effects and do not take into consideration interindividual differences in these effects. We propose an alternative approach to RM-ANOVA for analyzing repeated measures data, termed latent repeated measures analysis of variance (L-RM-ANOVA). The new approach is based on structural equation modeling and extends the latent growth components approach. L-RM-ANOVA enables the researcher to not only consider mean differences between different experimental conditions (i.e., average effects), but also to investigate interindividual differences in effects. Such interindividual differences are considered with regard to standard main and interactions effects and also with regard to customized contrasts that allow for testing specific hypotheses of interest. Furthermore, L-RM-ANOVA can include a measurement model for latent variables and can be used for the analysis of complex multi-factorial repeated measures designs. We conclude the presentation by demonstrating L-RM-ANOVA using a minimal repeated measures example.

摘要

重复测量方差分析(RM-ANOVA)是一种广泛应用于分析实验设计数据的统计方法。RM-ANOVA旨在研究实验条件(即因素)和影响感兴趣结果的预测变量的效应。它主要考虑检验标准主效应和交互效应的对比,尽管原则上也可以使用更复杂的对比。然而,分析仅专注于得出关于平均效应的结论,而不考虑这些效应中的个体差异。我们提出了一种用于分析重复测量数据的RM-ANOVA替代方法,称为潜在重复测量方差分析(L-RM-ANOVA)。新方法基于结构方程建模,并扩展了潜在增长成分方法。L-RM-ANOVA使研究人员不仅能够考虑不同实验条件之间的均值差异(即平均效应),还能够研究效应中的个体差异。这种个体差异在标准主效应和交互效应方面以及在允许检验特定感兴趣假设的定制对比方面都得到了考虑。此外,L-RM-ANOVA可以包括一个潜在变量的测量模型,并且可用于分析复杂的多因素重复测量设计。我们通过使用一个最小重复测量示例演示L-RM-ANOVA来结束本介绍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验