Maastricht University.
San Diego State University.
Multivariate Behav Res. 2024 Jul-Aug;59(4):716-737. doi: 10.1080/00273171.2024.2315557. Epub 2024 Jul 10.
Latent repeated measures ANOVA (L-RM-ANOVA) has recently been proposed as an alternative to traditional repeated measures ANOVA. L-RM-ANOVA builds upon structural equation modeling and enables researchers to investigate interindividual differences in main/interaction effects, examine custom contrasts, incorporate a measurement model, and account for missing data. However, L-RM-ANOVA uses maximum likelihood and thus cannot incorporate prior information and can have poor statistical properties in small samples. We show how L-RM-ANOVA can be used with Bayesian estimation to resolve the aforementioned issues. We demonstrate how to place informative priors on model parameters that constitute main and interaction effects. We further show how to place weakly informative priors on standardized parameters which can be used when no prior information is available. We conclude that Bayesian estimation can lower Type 1 error and bias, and increase power and efficiency when priors are chosen adequately. We demonstrate the approach using a real empirical example and guide the readers through specification of the model. We argue that ANOVA tables and incomplete descriptive statistics are not sufficient information to specify informative priors, and we identify which parameter estimates should be reported in future research; thereby promoting cumulative research.
潜在重复测量方差分析(L-RM-ANOVA)最近被提议作为传统重复测量方差分析的替代方法。L-RM-ANOVA 基于结构方程模型,使研究人员能够研究主要/交互效应的个体间差异,检验自定义对比,纳入测量模型,并处理缺失数据。然而,L-RM-ANOVA 使用最大似然,因此不能纳入先验信息,并且在小样本中可能具有较差的统计性质。我们展示了如何使用贝叶斯估计来解决上述问题。我们演示了如何对构成主要和交互效应的模型参数施加信息先验。我们进一步展示了如何对标准化参数施加弱信息先验,当没有先验信息时可以使用这些参数。我们得出结论,当选择适当的先验时,贝叶斯估计可以降低 Type 1 错误和偏差,并提高功效和效率。我们使用一个真实的实证示例演示了该方法,并指导读者指定模型。我们认为,方差分析表和不完整的描述性统计数据不足以指定信息先验,我们确定了在未来研究中应该报告哪些参数估计值;从而促进了累积研究。