Suppr超能文献

评估资源分配指数作为物质使用障碍的潜在 fMRI 生物标志物。

Evaluating the resource allocation index as a potential fMRI-based biomarker for substance use disorder.

机构信息

Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States; Department of Computer Science, J. Newton Rayzor Hall, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, United States.

Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States.

出版信息

Drug Alcohol Depend. 2020 Nov 1;216:108211. doi: 10.1016/j.drugalcdep.2020.108211. Epub 2020 Aug 9.

Abstract

BACKGROUND

There is a lack of neuroscience-based biomarkers for the diagnosis, treatment and monitoring of individuals with substance use disorders (SUD). The resource allocation index (RAI), a measure of the interrelationship between salience, executive control and default-mode brain networks (SN, ECN, and DMN), has been proposed as one such biomarker. However, the RAI has yet to be extensively tested in SUD samples.

METHODS

The present analysis compared RAI scores between individuals with stimulant and/or opioid use disorders (SUD; n = 139, abstinent 4-365 days) and healthy controls (HC; n = 56) who had completed resting-state functional magnetic resonance imaging (fMRI) scans within the context of the Tulsa 1000 cohort. First, we used independent component analysis (ICA) to identify the SN, ECN, and DMN and extract their time series data. Second, we used multiple permutations of automatically identified networks to compute RAI as reported in the fMRI literature.

RESULTS

First, the RAI as a metric depended substantially on the approach that was used to define the network components. Second, regardless of the selection of networks, after controlling for multiple testing there was no difference in RAI scores between SUD and HC. Third, the RAI was not associated with any substance use-related self-report measures.

CONCLUSION

Taken together, these findings do not provide evidence that RAI can be used as an fMRI-derived biomarker for the severity or diagnosis of individuals with SUD.

摘要

背景

目前缺乏基于神经科学的生物标志物,用于诊断、治疗和监测物质使用障碍(SUD)患者。资源分配指数(RAI)是一种衡量突显、执行控制和默认模式大脑网络(SN、ECN 和 DMN)之间相互关系的指标,被提议作为这样的生物标志物之一。然而,RAI 尚未在 SUD 样本中得到广泛测试。

方法

本分析比较了在 Tulsa 1000 队列中完成静息态功能磁共振成像(fMRI)扫描的有兴奋剂和/或阿片类物质使用障碍(SUD;n=139,戒断 4-365 天)和健康对照组(HC;n=56)个体之间的 RAI 评分。首先,我们使用独立成分分析(ICA)来识别 SN、ECN 和 DMN,并提取它们的时间序列数据。其次,我们使用自动识别网络的多种排列来计算 fMRI 文献中报告的 RAI。

结果

首先,作为一种衡量标准,RAI 很大程度上取决于用于定义网络组件的方法。其次,无论选择哪种网络,在进行多次检验校正后,SUD 和 HC 之间的 RAI 评分没有差异。第三,RAI 与任何与物质使用相关的自我报告测量都没有关联。

结论

综上所述,这些发现并没有提供证据表明 RAI 可以作为 fMRI 衍生的生物标志物用于 SUD 患者的严重程度或诊断。

相似文献

本文引用的文献

8
Brain default-mode network dysfunction in addiction.成瘾中的大脑默认模式网络功能障碍。
Neuroimage. 2019 Oct 15;200:313-331. doi: 10.1016/j.neuroimage.2019.06.036. Epub 2019 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验