Astuti Andi Rina Ayu, Saputera Wibawa Hendra, Ariono Danu, Wenten I Gede, Sasongko Dwiwahju
Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Muslim Indonesia, Jl. Urip Sumoharjo Km. 05, Makassar 90231, Indonesia.
ACS Omega. 2025 Feb 5;10(6):5563-5573. doi: 10.1021/acsomega.4c08249. eCollection 2025 Feb 18.
A combined approach for CO capture and photoreduction provides a comprehensive solution to address exhaust emissions. This study aims to develop a hybrid system integrating membrane contactor and photocatalytic technology for CO conversion to formic acid by optimizing the synthesis of ZnO-ZnS heterojunction photocatalysts through controlled variations in precursor concentrations and calcination temperatures. The catalysts are characterized to assess their structural and optical properties, photocatalytic activity, stability and reaction kinetics. Additionally, the photocatalytic performance is also tested using a model gas composition that simulates power plant emission with UV or visible light serving as the energy source. The synthesized ZnO-ZnS catalysts exhibit diffraction patterns consistent with standard references, with a measured band gap interval of 3.06-3.13 eV. Among the three most effective catalysts, labeled as Z1 (ZnO:ZnS ratio of 1:2 at 400 °C), Z2 (ZnO:ZnS ratio of 1:1 at 400 °C), and Z4 (ZnO:ZnS ratio of 1:2 at 500 °C), the formic acid yields were 0.643, 0.554, and 0.626 mmol/(L g h), respectively. The highest yield, 0.936 mmol/(L g), was achieved under a low CO feed gas concentration (15 vol%). Furthermore, under LED irradiation, the Z1 catalyst produced a formic acid yield of 0.394 mmol/(L g) after 4 h, demonstrating higher selectivity for formic acid production. Electrochemical impedance spectroscopy (EIS) analysis shows that Z1 exhibits lower resistance, enhancing charge transfer efficiency. Scanning electron microscopy (SEM) analysis reveals nanorod-like ZnO and globular ZnS structures ranging from 50 to 100 nm, while high-resolution transmission electron microscopy (HRTEM) confirms the presence of ZnO-ZnS diffraction patterns. After 4 h of photocatalytic test, the XRD analysis confirmed that most of the ZnO-ZnS catalyst peaks remained intact, indicating structural stability. Ultimately, the optimized ZnO-ZnS catalysts demonstrate promising efficiency for selective CO conversion to formic acid under visible light, offering a viable approach for emission reduction through advanced hybrid membrane-photocatalytic technology.
一种用于二氧化碳捕获和光还原的联合方法为解决废气排放提供了全面的解决方案。本研究旨在通过控制前驱体浓度和煅烧温度的变化来优化ZnO-ZnS异质结光催化剂的合成,从而开发一种集成膜接触器和光催化技术的混合系统,用于将二氧化碳转化为甲酸。对催化剂进行表征以评估其结构和光学性质、光催化活性、稳定性和反应动力学。此外,还使用模拟发电厂排放的模型气体组成,以紫外光或可见光作为能源来测试光催化性能。合成的ZnO-ZnS催化剂表现出与标准参考一致的衍射图谱,测得的带隙区间为3.06-3.13 eV。在三种最有效的催化剂中,标记为Z1(400℃时ZnO:ZnS比例为1:2)、Z2(400℃时ZnO:ZnS比例为1:1)和Z4(500℃时ZnO:ZnS比例为1:2),甲酸产率分别为0.643、0.554和0.626 mmol/(L g h)。在低CO进料气体浓度(15 vol%)下实现了最高产率0.936 mmol/(L g)。此外,在LED照射下,Z1催化剂在4小时后产生的甲酸产率为0.394 mmol/(L g),表明对甲酸生产具有更高的选择性。电化学阻抗谱(EIS)分析表明Z1表现出较低的电阻,提高了电荷转移效率。扫描电子显微镜(SEM)分析揭示了50至100 nm范围内的纳米棒状ZnO和球状ZnS结构,而高分辨率透射电子显微镜(HRTEM)证实了ZnO-ZnS衍射图谱的存在。经过4小时的光催化测试后,XRD分析证实大多数ZnO-ZnS催化剂峰保持完整,表明结构稳定性。最终,优化后的ZnO-ZnS催化剂在可见光下对选择性CO转化为甲酸表现出有前景的效率,为通过先进的混合膜-光催化技术实现减排提供了可行的方法。