Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA.
Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University , Washington, DC, USA.
Cell Cycle. 2020 Sep;19(18):2298-2313. doi: 10.1080/15384101.2020.1796268. Epub 2020 Aug 17.
Altered telomere maintenance mechanism (TMM) is linked to increased DNA damage at telomeres and telomere uncapping. We previously showed that HIV-1 latent cells have altered TMM and are susceptible to ligands that target G-quadruplexes (G4) at telomeres. Susceptibility of latent cells to telomere targeting could potentially be used to support approaches to eradicate HIV reservoirs. However, G4 ligands also target G-quadruplexes in promoters blocking gene transcription. Since HIV promoter sequence can form G-quadruplexes, we investigated whether G4 ligands interfere with HIV-1 promoter activity and virus reactivation from latency, and whether telomere targeting could be combined with latency reversing agents (LRAs) to promote elimination of HIV reservoirs. Our results indicate that Sp1 binding region in HIV-1 promoter can adopt G4 structures in duplex DNA, and that binding of Sp1 to G-quadruplex is blocked by G4 ligand, suggesting that agents targeting telomeres interfere with virus reactivation. However, our studies show that G4 agents do not affect HIV-1 promoter activity in cell culture, and do not interfere with latency reversal. Importantly, primary memory CD4 + T cells infected with latent HIV-1 are more susceptible to combined treatment with LRAs and G4 ligands, indicating that drugs targeting TMM may enhance killing of HIV reservoirs. Using a cell-based DNA repair assay, we also found that HIV-1 infected cells have reduced efficiency of DNA mismatch repair (MMR), and base excision repair (BER), suggesting that altered TMM in latently infected cells could be associated with accumulation of DNA damage at telomeres and changes in telomeric caps.
端粒维持机制(TMM)的改变与端粒处 DNA 损伤和端粒去帽的增加有关。我们之前曾表明,HIV-1 潜伏细胞的 TMM 发生改变,容易受到靶向端粒 G-四链体(G4)的配体的影响。潜伏细胞对端粒靶向的敏感性可能被用于支持清除 HIV 储存库的方法。然而,G4 配体也靶向阻止基因转录的启动子中的 G-四链体。由于 HIV 启动子序列可以形成 G-四链体,我们研究了 G4 配体是否会干扰 HIV-1 启动子活性和潜伏病毒的再激活,以及端粒靶向是否可以与潜伏逆转剂(LRAs)结合以促进 HIV 储存库的消除。我们的结果表明,HIV-1 启动子中的 Sp1 结合区可以在双链 DNA 中采用 G4 结构,并且 Sp1 与 G-四链体的结合被 G4 配体阻断,这表明靶向端粒的药物会干扰病毒的再激活。然而,我们的研究表明,G4 药物不会影响细胞培养中的 HIV-1 启动子活性,也不会干扰潜伏逆转。重要的是,感染潜伏 HIV-1 的原代记忆 CD4+T 细胞对 LRA 和 G4 配体的联合治疗更敏感,这表明靶向 TMM 的药物可能增强对 HIV 储存库的杀伤作用。通过基于细胞的 DNA 修复测定,我们还发现 HIV-1 感染的细胞具有降低的 DNA 错配修复(MMR)和碱基切除修复(BER)效率,这表明潜伏感染细胞中 TMM 的改变可能与端粒处 DNA 损伤的积累和端粒帽的变化有关。