Suppr超能文献

在美国使用前瞻性时空扫描统计量对新冠病毒病进行每日监测。

Daily surveillance of COVID-19 using the prospective space-time scan statistic in the United States.

作者信息

Hohl Alexander, Delmelle Eric M, Desjardins Michael R, Lan Yu

机构信息

Department of Geography, The University of Utah, 260 S Campus Dr., Rm 4625, Salt Lake City, UT 84112, USA.

Department of Geography and Earth Sciences, Center for Applied Geographic Information Science, University of North Carolina at Charlotte, Charlotte, NC 28223,, USA.

出版信息

Spat Spatiotemporal Epidemiol. 2020 Aug;34:100354. doi: 10.1016/j.sste.2020.100354. Epub 2020 Jun 27.

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in late 2019 in Wuhan City, China. The virus may cause novel coronavirus disease 2019 (COVID-19) in symptomatic individuals. Since December of 2019, there have been over 7,000,000 confirmed cases and over 400,000 confirmed deaths worldwide. In the United States (U.S.), there have been over 2,000,000 confirmed cases and over 110,000 confirmed deaths. COVID-19 case data in the United States has been updated daily at the county level since the first case was reported in January of 2020. There currently lacks a study that showcases the novelty of daily COVID-19 surveillance using space-time cluster detection techniques. In this paper, we utilize a prospective Poisson space-time scan statistic to detect daily clusters of COVID-19 at the county level in the contiguous 48 U.S. and Washington D.C. As the pandemic progresses, we generally find an increase of smaller clusters of remarkably steady relative risk. Daily tracking of significant space-time clusters can facilitate decision-making and public health resource allocation by evaluating and visualizing the size, relative risk, and locations that are identified as COVID-19 hotspots.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)于2019年末在中国武汉市首次发现。该病毒可使出现症状的个体感染2019新型冠状病毒病(COVID-19)。自2019年12月以来,全球已有超过700万例确诊病例和超过40万例确诊死亡病例。在美国,已有超过200万例确诊病例和超过11万例确诊死亡病例。自2020年1月报告首例病例以来,美国县级的COVID-19病例数据每日更新。目前缺乏一项研究来展示使用时空聚类检测技术进行每日COVID-19监测的新颖性。在本文中,我们利用前瞻性泊松时空扫描统计量来检测美国本土48个州和华盛顿特区县级的每日COVID-19聚集情况。随着疫情的发展,我们通常会发现相对风险显著稳定的较小聚集情况有所增加。通过评估和可视化被确定为COVID-19热点地区的规模、相对风险和位置,对重要时空聚集情况进行每日跟踪有助于决策制定和公共卫生资源分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aecc/7320856/806660f31f9a/fx1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验