Suppr超能文献

在数据预处理中解决 LC/MS 代谢组学数据的批次效应问题。

Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing.

机构信息

School of Software Engineering, Tongji University, Shanghai, 201804, China.

Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

出版信息

Sci Rep. 2020 Aug 17;10(1):13856. doi: 10.1038/s41598-020-70850-0.

Abstract

With the growth of metabolomics research, more and more studies are conducted on large numbers of samples. Due to technical limitations of the Liquid Chromatography-Mass Spectrometry (LC/MS) platform, samples often need to be processed in multiple batches. Across different batches, we often observe differences in data characteristics. In this work, we specifically focus on data generated in multiple batches on the same LC/MS machinery. Traditional preprocessing methods treat all samples as a single group. Such practice can result in errors in the alignment of peaks, which cannot be corrected by post hoc application of batch effect correction methods. In this work, we developed a new approach that address the batch effect issue in the preprocessing stage, resulting in better peak detection, alignment and quantification. It can be combined with down-stream batch effect correction methods to further correct for between-batch intensity differences. The method is implemented in the existing workflow of the apLCMS platform. Analyzing data with multiple batches, both generated from standardized quality control (QC) plasma samples and from real biological studies, the new method resulted in feature tables with better consistency, as well as better down-stream analysis results. The method can be a useful addition to the tools available for large studies involving multiple batches. The method is available as part of the apLCMS package. Download link and instructions are at https://mypage.cuhk.edu.cn/academics/yutianwei/apLCMS/ .

摘要

随着代谢组学研究的发展,越来越多的研究针对大量样本进行。由于液相色谱-质谱(LC/MS)平台的技术限制,样本通常需要分多个批次处理。在不同批次之间,我们经常观察到数据特征的差异。在这项工作中,我们特别关注在同一 LC/MS 仪器上生成的多个批次的数据。传统的预处理方法将所有样本视为一个单一的组。这种做法可能导致峰对齐错误,而无法通过事后应用批次效应校正方法进行校正。在这项工作中,我们开发了一种新的方法,在预处理阶段解决批次效应问题,从而实现更好的峰检测、对齐和定量。它可以与下游批次效应校正方法结合使用,以进一步校正批次间的强度差异。该方法在现有的 apLCMS 平台工作流程中实现。通过对来自标准化质量控制(QC)血浆样本和真实生物研究的多个批次数据进行分析,新方法产生的特征表具有更好的一致性,以及更好的下游分析结果。该方法可以为涉及多个批次的大型研究提供有用的工具补充。该方法作为 apLCMS 软件包的一部分提供。下载链接和说明在 https://mypage.cuhk.edu.cn/academics/yutianwei/apLCMS/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a476/7431853/89631876696c/41598_2020_70850_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验