Division of Biostatistics, Department of Population Health, New York University, New York, NY, USA and Department of Biostatistics, Columbia University, New York, NY, USA.
Biostatistics. 2022 Apr 13;23(2):412-429. doi: 10.1093/biostatistics/kxaa032.
Sparse additive modeling is a class of effective methods for performing high-dimensional nonparametric regression. This article develops a sparse additive model focused on estimation of treatment effect modification with simultaneous treatment effect-modifier selection. We propose a version of the sparse additive model uniquely constrained to estimate the interaction effects between treatment and pretreatment covariates, while leaving the main effects of the pretreatment covariates unspecified. The proposed regression model can effectively identify treatment effect-modifiers that exhibit possibly nonlinear interactions with the treatment variable that are relevant for making optimal treatment decisions. A set of simulation experiments and an application to a dataset from a randomized clinical trial are presented to demonstrate the method.
稀疏加法模型是进行高维非参数回归的一类有效方法。本文开发了一种侧重于同时进行治疗效果修饰选择和治疗效果修饰估计的稀疏加法模型。我们提出了一种稀疏加法模型,该模型唯一的约束条件是估计治疗与预处理协变量之间的相互作用效应,而不指定预处理协变量的主效应。所提出的回归模型可以有效地识别与治疗变量存在可能非线性相互作用的治疗效果修饰因子,这对于做出最佳治疗决策是相关的。本文通过一系列模拟实验和对随机临床试验数据集的应用来说明该方法。