Suppr超能文献

第一阶段EMBARC(建立用于临床护理的抗抑郁反应调节因子和生物标志物)研究的统计分析计划。

Statistical Analysis Plan for Stage 1 EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care) Study.

作者信息

Petkova Eva, Ogden R Todd, Tarpey Thaddeus, Ciarleglio Adam, Jiang Bei, Su Zhe, Carmody Thomas, Adams Philip, Kraemer Helena C, Grannemann Bruce D, Oquendo Maria A, Parsey Ramin, Weissman Myrna, McGrath Patrick J, Fava Maurizio, Trivedi Madhukar H

机构信息

New York University, New York and Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.

Columbia University, New York, NY, USA.

出版信息

Contemp Clin Trials Commun. 2017 Jun;6:22-30. doi: 10.1016/j.conctc.2017.02.007. Epub 2017 Feb 24.

Abstract

Antidepressant medications are commonly used to treat depression, but only about 30% of patients reach remission with any single first-step antidepressant. If the first-step treatment fails, response and remission rates at subsequent steps are even more limited. The literature on biomarkers for treatment response is largely based on secondary analyses of studies designed to answer primary questions of efficacy, rather than on a planned systematic evaluation of biomarkers for treatment decision. The lack of evidence-based knowledge to guide treatment decisions for patients with depression has lead to the recognition that specially designed studies with the primary objective being to discover biosignatures for optimizing treatment decisions are necessary. Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) is one such discovery study. Stage 1 of EMBARC is a randomized placebo controlled clinical trial of 8 week duration. A wide array of patient characteristics is collected at baseline, including assessments of brain structure, function and connectivity along with electrophysiological, biological, behavioral and clinical features. This paper reports on the data analytic strategy for discovering biosignatures for treatment response based on Stage 1 of EMBARC.

摘要

抗抑郁药物常用于治疗抑郁症,但任何一种单一的一线抗抑郁药物治疗后,只有约30%的患者达到缓解状态。如果第一步治疗失败,后续步骤的有效率和缓解率会更低。关于治疗反应生物标志物的文献主要基于旨在回答疗效主要问题的研究的二次分析,而不是基于对用于治疗决策的生物标志物的有计划的系统评估。缺乏基于证据的知识来指导抑郁症患者的治疗决策,已促使人们认识到有必要开展专门设计的研究,其主要目标是发现生物特征以优化治疗决策。“临床护理中抗抑郁反应的调节因素和生物特征”(EMBARC)研究就是这样一项探索性研究。EMBARC的第一阶段是一项为期8周的随机安慰剂对照临床试验。在基线时收集了广泛的患者特征,包括脑结构、功能和连通性评估以及电生理、生物学、行为和临床特征。本文报告了基于EMBARC第一阶段发现治疗反应生物特征的数据分析策略。

相似文献

引用本文的文献

6
Towards Algorithmic Analytics for Large-scale Datasets.面向大规模数据集的算法分析
Nat Mach Intell. 2019 Jul;1(7):296-306. doi: 10.1038/s42256-019-0069-5. Epub 2019 Jul 9.

本文引用的文献

4
Generated effect modifiers (GEM's) in randomized clinical trials.随机临床试验中的生成效应修饰因素(GEM's)
Biostatistics. 2017 Jan;18(1):105-118. doi: 10.1093/biostatistics/kxw035. Epub 2016 Jul 27.
7
Tree-based methods for individualized treatment regimes.用于个性化治疗方案的基于树的方法。
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验