Chemistry Department "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40129, Bologna, Italy.
Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
ChemSusChem. 2020 Sep 18;13(18):4894-4899. doi: 10.1002/cssc.202001274. Epub 2020 Aug 18.
Solar-to-chemical (STC) energy conversion is the fundamental process that nurtures Earth's ecosystem, fixing the inexhaustible solar resource into chemical bonds. Photochemical synthesis endows plants with the primary substances for their development; likewise, an artificial mimic of natural systems has long sought to support human civilization in a sustainable way. Intensive efforts have demonstrated light-triggered production of different solar fuels, such as H , CO, CH and NH , while research on oxidative half-reactions has built up from O generation to organic synthesis, waste degradation and photo-reforming. Nevertheless, while extensive utilization of the radiant chemical potential to promote a manifold of endergonic processes is the common thread of such research, exploration of the chemical space is fragmented by the lack of a common language across different scientific disciplines. Focusing on colloidal semiconductor materials, this Viewpoint discusses an inclusive protocol for the discovery and assessment of STC redox reactions, aiming to establish photon-to-molecule conversion as the ultimate paradigm beyond fossil energy exploitation.
太阳能到化学能(STC)的能量转换是滋养地球生态系统的基本过程,它将取之不尽的太阳能转化为化学键。光化学合成赋予了植物发展所需的基本物质;同样,人们长期以来一直在寻求模仿自然系统的人工方法,以可持续的方式支持人类文明。大量的努力已经证明了可以用光触发生产不同的太阳能燃料,如 H2、CO、CH4 和 NH3,而对氧化半反应的研究已经从 O2 的生成扩展到有机合成、废物降解和光重整。然而,尽管广泛利用辐射化学势来促进多种吸能过程是此类研究的共同主线,但由于不同科学学科之间缺乏共同语言,化学空间的探索仍然是零散的。本文以胶体半导体材料为重点,讨论了发现和评估 STC 氧化还原反应的综合方案,旨在将光子到分子的转换确立为超越化石能源利用的最终范例。