Kanazawa S, Driscoll M, Struhl K
Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115.
Mol Cell Biol. 1988 Feb;8(2):664-73. doi: 10.1128/mcb.8.2.664-673.1988.
In Saccharomyces cerevisiae, 3-amino-1,2,4-triazole (aminotriazole) competitively inhibits the activity of imidazoleglycerolphosphate dehydratase, the product of the HIS3 gene. Wild-type strains are able to grow in the presence of 10 mM aminotriazole because they induce the level of imidazoleglycerolphosphate dehydratase. However, strains containing gcn4 mutations are unable to grow in medium containing aminotriazole because they lack the GCN4 transcriptional activator protein necessary for the coordinate induction of HIS3 and other amino acid biosynthetic genes. Here, we isolated a new gene, designated ATR1, which when present in multiple copies per cell allowed gcn4 mutant strains to grow in the presence of aminotriazole. In wild-type strains, multiple copies of ATR1 permitted growth at extremely high concentrations of aminotriazole (80 mM), whereas a chromosomal deletion of ATR1 caused growth inhibition at very low concentrations (5 mM). When radioactive aminotriazole was added exogenously, cells with multiple copies of ATR1 accumulated less aminotriazole than wild-type cells, whereas cells with the atr1 deletion mutation retained more aminotriazole. Unlike the mammalian mdr or yeast PDR genes that confer resistance to many drugs, ATR1 appears to confer resistance only to aminotriazole. Genetic analysis, mRNA mapping, and DNA sequencing revealed that (i) the primary translation product of ATR1 contains 547 amino acids, (ii) ATR1 transcription is induced by aminotriazole, and (iii) the ATR1 promoter region contains a binding site for the GCN4 activator protein. The deduced amino acid sequence suggests that ATR1 protein is very hydrophobic with many membrane-spanning regions, has several potential glycosylation sites, and may contain an ATP-binding site. We suggest that ATR1 encodes a membrane-associated component of the machinery responsible for pumping aminotriazole (and possibly other toxic compounds) out of the cell.
在酿酒酵母中,3-氨基-1,2,4-三唑(氨三唑)竞争性抑制组氨酸3(HIS3)基因产物咪唑甘油磷酸脱水酶的活性。野生型菌株能够在10 mM氨三唑存在的情况下生长,因为它们会诱导咪唑甘油磷酸脱水酶的水平。然而,含有gcn4突变的菌株无法在含有氨三唑的培养基中生长,因为它们缺乏协调诱导HIS3和其他氨基酸生物合成基因所需的GCN4转录激活蛋白。在此,我们分离出一个新基因,命名为ATR1,当每个细胞中存在多个拷贝时,它能使gcn4突变菌株在氨三唑存在的情况下生长。在野生型菌株中,多个拷贝的ATR1允许在极高浓度的氨三唑(80 mM)下生长,而ATR1的染色体缺失则导致在极低浓度(5 mM)下生长受到抑制。当外源添加放射性氨三唑时,含有多个拷贝ATR1的细胞比野生型细胞积累的氨三唑更少,而具有atr1缺失突变的细胞保留的氨三唑更多。与赋予对多种药物抗性的哺乳动物多药耐药(mdr)或酵母多药耐药(PDR)基因不同,ATR1似乎仅赋予对氨三唑的抗性。遗传分析、mRNA定位和DNA测序表明:(i)ATR1的初级翻译产物包含547个氨基酸;(ii)ATR1转录由氨三唑诱导;(iii)ATR1启动子区域包含GCN4激活蛋白的结合位点。推导的氨基酸序列表明,ATR1蛋白具有很强的疏水性,有许多跨膜区域,有几个潜在的糖基化位点,并且可能含有一个ATP结合位点。我们认为ATR1编码一种与膜相关的成分,该成分负责将氨三唑(可能还有其他有毒化合物)泵出细胞。