Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
Physiol Rep. 2020 Aug;8(16):e14563. doi: 10.14814/phy2.14563.
Exercise-induced hyperemia in calf muscles was recently shown to be quantifiable with high-resolution magnetic resonance imaging (MRI). However, processing of the MRI data to obtain muscle-perfusion maps is time-consuming. This study proposes to substantially accelerate the mapping of muscle perfusion using a deep-learning method called artificial neural network (NN). Forty-eight MRI scans were acquired from 21 healthy subjects and patients with peripheral artery disease (PAD). For optimal training of NN, different training-data sets were compared, investigating the effect of data diversity and reference perfusion accuracy. Reference perfusion was estimated by tracer kinetic model fitting initialized with multiple values (multigrid model fitting). Result: The NN method was much faster than tracer kinetic model fitting. To generate a perfusion map of matrix 128 × 128 on a same computer, multigrid model fitting took about 80 min, single-grid or regular model fitting about 3 min, while the NN method took about 1 s. Compared to the reference values, NN trained with a diverse group gave estimates with mean absolute error (MAE) of 15.9 ml/min/100g and correlation coefficient (R) of 0.949, significantly more accurate than regular model fitting (MAE 22.3 ml/min/100g, R 0.889, p < .001). Conclusion: the NN method enables rapid perfusion mapping, and if properly trained, estimates perfusion with accuracy comparable to multigrid model fitting.
最近研究表明,利用高分辨率磁共振成像(MRI)可以定量测量小腿肌肉的运动充血。然而,处理 MRI 数据以获得肌肉灌注图是非常耗时的。本研究提出了一种使用深度学习方法(人工神经网络,NN)来显著加速肌肉灌注映射的方法。从 21 名健康受试者和外周动脉疾病(PAD)患者中采集了 48 次 MRI 扫描。为了对 NN 进行最佳训练,比较了不同的训练数据集,研究了数据多样性和参考灌注准确性的影响。参考灌注是通过使用多个值初始化的示踪剂动力学模型拟合(多网格模型拟合)来估计的。结果:NN 方法比示踪剂动力学模型拟合快得多。为了在同一台计算机上生成 128×128 矩阵的灌注图,多网格模型拟合大约需要 80 分钟,单网格或正则模型拟合大约需要 3 分钟,而 NN 方法只需要大约 1 秒。与参考值相比,使用多样化组训练的 NN 给出的估计值具有 15.9ml/min/100g 的平均绝对误差(MAE)和 0.949 的相关系数(R),明显比正则模型拟合更准确(MAE 22.3ml/min/100g,R 0.889,p<.001)。结论:NN 方法可以实现快速的灌注映射,如果经过适当的训练,它可以以与多网格模型拟合相当的精度来估计灌注。