Suppr超能文献

血管外科中的机器学习:系统评价与批判性评估。

Machine learning in vascular surgery: a systematic review and critical appraisal.

作者信息

Li Ben, Feridooni Tiam, Cuen-Ojeda Cesar, Kishibe Teruko, de Mestral Charles, Mamdani Muhammad, Al-Omran Mohammed

机构信息

Department of Surgery, University of Toronto, 149 College St, Toronto, ON, M5T 1P5, Canada.

Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.

出版信息

NPJ Digit Med. 2022 Jan 19;5(1):7. doi: 10.1038/s41746-021-00552-y.

Abstract

Machine learning (ML) is a rapidly advancing field with increasing utility in health care. We conducted a systematic review and critical appraisal of ML applications in vascular surgery. MEDLINE, Embase, and Cochrane CENTRAL were searched from inception to March 1, 2021. Study screening, data extraction, and quality assessment were performed by two independent reviewers, with a third author resolving discrepancies. All original studies reporting ML applications in vascular surgery were included. Publication trends, disease conditions, methodologies, and outcomes were summarized. Critical appraisal was conducted using the PROBAST risk-of-bias and TRIPOD reporting adherence tools. We included 212 studies from a pool of 2235 unique articles. ML techniques were used for diagnosis, prognosis, and image segmentation in carotid stenosis, aortic aneurysm/dissection, peripheral artery disease, diabetic foot ulcer, venous disease, and renal artery stenosis. The number of publications on ML in vascular surgery increased from 1 (1991-1996) to 118 (2016-2021). Most studies were retrospective and single center, with no randomized controlled trials. The median area under the receiver operating characteristic curve (AUROC) was 0.88 (range 0.61-1.00), with 79.5% [62/78] studies reporting AUROC ≥ 0.80. Out of 22 studies comparing ML techniques to existing prediction tools, clinicians, or traditional regression models, 20 performed better and 2 performed similarly. Overall, 94.8% (201/212) studies had high risk-of-bias and adherence to reporting standards was poor with a rate of 41.4%. Despite improvements over time, study quality and reporting remain inadequate. Future studies should consider standardized tools such as PROBAST and TRIPOD to improve study quality and clinical applicability.

摘要

机器学习(ML)是一个快速发展的领域,在医疗保健中的应用越来越广泛。我们对血管外科中ML的应用进行了系统综述和批判性评价。检索了MEDLINE、Embase和Cochrane CENTRAL数据库,检索时间从建库至2021年3月1日。由两名独立的评审员进行研究筛选、数据提取和质量评估,第三位作者解决分歧。纳入所有报告血管外科中ML应用的原始研究。总结了发表趋势、疾病状况、方法和结果。使用PROBAST偏倚风险和TRIPOD报告依从性工具进行批判性评价。我们从2235篇独特文章中纳入了212项研究。ML技术用于颈动脉狭窄、主动脉瘤/夹层、外周动脉疾病、糖尿病足溃疡、静脉疾病和肾动脉狭窄的诊断、预后和图像分割。血管外科中关于ML的出版物数量从1991 - 1996年的1篇增加到2016 - 2021年的118篇。大多数研究是回顾性的且为单中心研究,没有随机对照试验。受试者操作特征曲线下面积(AUROC)的中位数为0.88(范围0.61 - 1.00),79.5%[62/78]的研究报告AUROC≥0.80。在22项将ML技术与现有预测工具、临床医生或传统回归模型进行比较的研究中,20项表现更好,2项表现相似。总体而言,94.8%(201/212)的研究存在高偏倚风险,报告标准的依从性较差,比例为41.4%。尽管随着时间推移有所改善,但研究质量和报告仍不充分。未来的研究应考虑使用PROBAST和TRIPOD等标准化工具来提高研究质量和临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b76/8770468/b41abca4712c/41746_2021_552_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验