Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA.
Dev Cell. 2020 Sep 14;54(5):574-582.e4. doi: 10.1016/j.devcel.2020.07.020. Epub 2020 Aug 19.
Mesoscale macromolecular complexes and organelles, tens to hundreds of nanometers in size, crowd the eukaryotic cytoplasm. It is therefore unclear how mesoscale particles remain sufficiently mobile to regulate dynamic processes such as cell division. Here, we study mobility across dividing cells that contain densely packed, dynamic microtubules, comprising the metaphase spindle. In dividing human cells, we tracked 40 nm genetically encoded multimeric nanoparticles (GEMs), whose sizes are commensurate with the inter-filament spacing in metaphase spindles. Unexpectedly, the effective diffusivity of GEMs was similar inside the dense metaphase spindle and the surrounding cytoplasm. Eliminating microtubules or perturbing their polymerization dynamics decreased diffusivity by ~30%, suggesting that microtubule polymerization enhances random displacements to amplify diffusive-like motion. Our results suggest that microtubules effectively fluidize the mitotic cytoplasm to equalize mesoscale mobility across a densely packed, dynamic, non-uniform environment, thus spatially maintaining a key biophysical parameter that impacts biochemistry, ranging from metabolism to the nucleation of cytoskeletal filaments.
大小为数十到数百纳米的介观大分子复合物和细胞器充斥着真核细胞质。因此,介观颗粒如何保持足够的流动性以调节细胞分裂等动态过程尚不清楚。在这里,我们研究了含有密集、动态微管(构成中期纺锤体)的分裂细胞中的流动性。在分裂的人类细胞中,我们追踪了 40nm 的基因编码多聚体纳米颗粒 (GEM),其大小与中期纺锤体中丝状结构的间隔相匹配。出人意料的是,GEM 的有效扩散系数在密集的中期纺锤体内部和周围的细胞质中是相似的。消除微管或扰乱其聚合动力学会使扩散系数降低约 30%,这表明微管聚合增强了随机位移以放大类似扩散的运动。我们的结果表明,微管有效地使有丝分裂细胞质流体化,从而在密集、动态、不均匀的环境中使介观流动性均匀化,从而在空间上维持影响生物化学的关键生物物理参数,范围从代谢到细胞骨架丝的成核。