Suppr超能文献

微管增强了拥挤的中期细胞质中的介观有效扩散率。

Microtubules Enhance Mesoscale Effective Diffusivity in the Crowded Metaphase Cytoplasm.

机构信息

Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.

Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA.

出版信息

Dev Cell. 2020 Sep 14;54(5):574-582.e4. doi: 10.1016/j.devcel.2020.07.020. Epub 2020 Aug 19.

Abstract

Mesoscale macromolecular complexes and organelles, tens to hundreds of nanometers in size, crowd the eukaryotic cytoplasm. It is therefore unclear how mesoscale particles remain sufficiently mobile to regulate dynamic processes such as cell division. Here, we study mobility across dividing cells that contain densely packed, dynamic microtubules, comprising the metaphase spindle. In dividing human cells, we tracked 40 nm genetically encoded multimeric nanoparticles (GEMs), whose sizes are commensurate with the inter-filament spacing in metaphase spindles. Unexpectedly, the effective diffusivity of GEMs was similar inside the dense metaphase spindle and the surrounding cytoplasm. Eliminating microtubules or perturbing their polymerization dynamics decreased diffusivity by ~30%, suggesting that microtubule polymerization enhances random displacements to amplify diffusive-like motion. Our results suggest that microtubules effectively fluidize the mitotic cytoplasm to equalize mesoscale mobility across a densely packed, dynamic, non-uniform environment, thus spatially maintaining a key biophysical parameter that impacts biochemistry, ranging from metabolism to the nucleation of cytoskeletal filaments.

摘要

大小为数十到数百纳米的介观大分子复合物和细胞器充斥着真核细胞质。因此,介观颗粒如何保持足够的流动性以调节细胞分裂等动态过程尚不清楚。在这里,我们研究了含有密集、动态微管(构成中期纺锤体)的分裂细胞中的流动性。在分裂的人类细胞中,我们追踪了 40nm 的基因编码多聚体纳米颗粒 (GEM),其大小与中期纺锤体中丝状结构的间隔相匹配。出人意料的是,GEM 的有效扩散系数在密集的中期纺锤体内部和周围的细胞质中是相似的。消除微管或扰乱其聚合动力学会使扩散系数降低约 30%,这表明微管聚合增强了随机位移以放大类似扩散的运动。我们的结果表明,微管有效地使有丝分裂细胞质流体化,从而在密集、动态、不均匀的环境中使介观流动性均匀化,从而在空间上维持影响生物化学的关键生物物理参数,范围从代谢到细胞骨架丝的成核。

相似文献

1
Microtubules Enhance Mesoscale Effective Diffusivity in the Crowded Metaphase Cytoplasm.
Dev Cell. 2020 Sep 14;54(5):574-582.e4. doi: 10.1016/j.devcel.2020.07.020. Epub 2020 Aug 19.
2
Engineering metaphase spindles: Construction site and building blocks.
Curr Opin Cell Biol. 2022 Dec;79:102143. doi: 10.1016/j.ceb.2022.102143. Epub 2022 Nov 24.
3
Contribution of cytoplasm viscoelastic properties to mitotic spindle positioning.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2115593119.
4
The metaphase spindle at steady state - Mechanism and functions of microtubule poleward flux.
Semin Cell Dev Biol. 2021 Sep;117:99-117. doi: 10.1016/j.semcdb.2021.05.016. Epub 2021 May 28.
5
Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions.
Cell Motil Cytoskeleton. 1993;26(1):19-39. doi: 10.1002/cm.970260104.
6
Nucleation and transport organize microtubules in metaphase spindles.
Cell. 2012 Apr 27;149(3):554-64. doi: 10.1016/j.cell.2012.03.027.
7
Analyzing the micromechanics of the cell division apparatus.
Methods Cell Biol. 2018;145:173-190. doi: 10.1016/bs.mcb.2018.03.022. Epub 2018 May 1.
9
Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.
PLoS One. 2014 Oct 9;9(10):e102547. doi: 10.1371/journal.pone.0102547. eCollection 2014.
10
TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux.
J Cell Biol. 2015 Aug 3;210(3):373-83. doi: 10.1083/jcb.201412109.

引用本文的文献

1
Cell state-specific cytoplasmic density controls spindle architecture and scaling.
Nat Cell Biol. 2025 Jun;27(6):959-971. doi: 10.1038/s41556-025-01678-x. Epub 2025 Jun 13.
2
Proteolethargy is a pathogenic mechanism in chronic disease.
Cell. 2025 Jan 9;188(1):207-221.e30. doi: 10.1016/j.cell.2024.10.051. Epub 2024 Nov 27.
3
Polysome collapse and RNA condensation fluidize the cytoplasm.
Mol Cell. 2024 Jul 25;84(14):2698-2716.e9. doi: 10.1016/j.molcel.2024.06.024.
4
Development and Characterization of 50 nanometer diameter Genetically Encoded Multimeric Nanoparticles.
bioRxiv. 2024 Jul 7:2024.07.05.602291. doi: 10.1101/2024.07.05.602291.
5
6
SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis.
PLoS Biol. 2023 Sep 18;21(9):e3002305. doi: 10.1371/journal.pbio.3002305. eCollection 2023 Sep.
7
How it feels in a cell.
Trends Cell Biol. 2023 Nov;33(11):924-938. doi: 10.1016/j.tcb.2023.05.002. Epub 2023 Jun 5.
8
Mechanisms underlying spindle assembly and robustness.
Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.
9
Size- and position-dependent cytoplasm viscoelasticity through hydrodynamic interactions with the cell surface.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2216839120. doi: 10.1073/pnas.2216839120. Epub 2023 Feb 21.
10
Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations.
Biophys J. 2023 Mar 7;122(5):767-783. doi: 10.1016/j.bpj.2023.01.040. Epub 2023 Feb 3.

本文引用的文献

1
Collective Dynamics of Model Pili-Based Twitcher-Mode Bacilliforms.
Sci Rep. 2020 Jul 1;10(1):10747. doi: 10.1038/s41598-020-67212-1.
2
Asymmetric Molecular Architecture of the Human γ-Tubulin Ring Complex.
Cell. 2020 Jan 9;180(1):165-175.e16. doi: 10.1016/j.cell.2019.12.007. Epub 2019 Dec 17.
3
Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis.
Nature. 2019 Dec;576(7787):477-481. doi: 10.1038/s41586-019-1831-x. Epub 2019 Dec 11.
4
A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes.
Science. 2019 Jun 28;364(6447). doi: 10.1126/science.aat9557.
5
Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells.
Nat Mater. 2018 Aug;17(8):740-746. doi: 10.1038/s41563-018-0120-7. Epub 2018 Jul 2.
6
mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding.
Cell. 2018 Jul 12;174(2):338-349.e20. doi: 10.1016/j.cell.2018.05.042. Epub 2018 Jun 21.
7
A quantitative map of human Condensins provides new insights into mitotic chromosome architecture.
J Cell Biol. 2018 Jul 2;217(7):2309-2328. doi: 10.1083/jcb.201801048. Epub 2018 Apr 9.
8
Non-invasive perturbations of intracellular flow reveal physical principles of cell organization.
Nat Cell Biol. 2018 Mar;20(3):344-351. doi: 10.1038/s41556-017-0032-9. Epub 2018 Feb 5.
10
Chromosomal passenger complex hydrodynamics suggests chaperoning of the inactive state by nucleoplasmin/nucleophosmin.
Mol Biol Cell. 2017 Jun 1;28(11):1444-1456. doi: 10.1091/mbc.E16-12-0860. Epub 2017 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验