Suppr超能文献

识别微阵列数据中的显著基因:一种用于共表达网络的新型博弈论模型

Identifying the Salient Genes in Microarray Data: A Novel Game Theoretic Model for the Co-Expression Network.

作者信息

Neog Bora Papori, Baruah Vishwa Jyoti, Borkotokey Surajit, Gogoi Loyimee, Mahanta Priyakshi, Sarmah Ankumon, Kumar Rajnish, Moretti Stefano

机构信息

Department of Mathematics, Dibrugarh University, Dibrugarh 786004, India.

Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, India.

出版信息

Diagnostics (Basel). 2020 Aug 13;10(8):586. doi: 10.3390/diagnostics10080586.

Abstract

Microarray techniques are used to generate a large amount of information on gene expression. This information can be statistically processed and analyzed to identify the genes useful for the diagnosis and prognosis of genetic diseases. Game theoretic tools are applied to analyze the gene expression data. Gene co-expression networks are increasingly used to explore the system-level functionality of genes, where the roles of the genes in building networks in addition to their independent activities are also considered. In this paper, we develop a novel microarray network game by constructing a gene co-expression network and defining a game on this network. The notion of the Link Relevance Index (LRI) for this network game is introduced and characterized. The LRI successfully identifies the relevant cancer biomarkers. It also enables identifying salient genes in the colon cancer dataset. Network games can more accurately describe the interactions among genes as their basic premises are to consider the interactions among players prescribed by a network structure. LRI presents a tool to identify the underlying salient genes involved in cancer or other metabolic syndromes.

摘要

微阵列技术用于生成大量有关基因表达的信息。这些信息可以进行统计处理和分析,以识别对遗传疾病的诊断和预后有用的基因。博弈论工具被应用于分析基因表达数据。基因共表达网络越来越多地用于探索基因的系统级功能,其中除了基因的独立活动外,还考虑了它们在构建网络中的作用。在本文中,我们通过构建基因共表达网络并在该网络上定义一个博弈,开发了一种新颖的微阵列网络游戏。引入并刻画了该网络游戏的链接相关性指数(LRI)概念。LRI成功地识别了相关的癌症生物标志物。它还能够识别结肠癌数据集中的显著基因。网络游戏能够更准确地描述基因之间的相互作用,因为它们的基本前提是考虑由网络结构规定的参与者之间的相互作用。LRI提供了一种工具,用于识别参与癌症或其他代谢综合征的潜在显著基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d971/7460294/dc0f089330d0/diagnostics-10-00586-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验