Spitaleri Luca, Gangemi Chiara M A, Purrello Roberto, Nicotra Giuseppe, Trusso Sfrazzetto Giuseppe, Casella Girolamo, Casarin Maurizio, Gulino Antonino
Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
National Interuniversity Consortium of Materials Science and Technology (I.N.S.T.M.), Research Unit (UdR) of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
Nanomaterials (Basel). 2020 Aug 21;10(9):1644. doi: 10.3390/nano10091644.
Gold nanoparticles show important electronic and optical properties, owing to their size, shape, and electronic structures. Indeed, gold nanoparticles containing no more than 30-40 atoms are only luminescent, while nanometer-sized gold nanoparticles only show surface plasmon resonance. Therefore, it appears that gold nanoparticles can alternatively be luminescent or plasmonic and this represents a severe restriction for their use as optical material. The aim of our study was the fabrication of nanoscale assembly of Au nanoparticles with bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture not only exhibits a strong surface plasmon, due to the Au nanoparticles, but also a strong luminescence signal due to porphyrin molecules, thus, behaving as an artificial organized plasmonic and fluorescent network. Mutual Au nanoparticles-porphyrin interactions tune the Au network size whose dimension can easily be read out, being the position of the surface plasmon resonance strongly indicative of this size. The present system can be used for all the applications requiring plasmonic and luminescent emitters.
金纳米颗粒因其尺寸、形状和电子结构而展现出重要的电学和光学性质。实际上,所含原子数不超过30 - 40个的金纳米颗粒仅具有发光性,而纳米尺寸的金纳米颗粒仅表现出表面等离子体共振。因此,金纳米颗粒似乎要么具有发光性,要么具有等离子体特性,这对其作为光学材料的应用构成了严重限制。我们研究的目的是制备金纳米颗粒与双功能卟啉分子的纳米级组装体,卟啉分子充当不同金纳米颗粒之间的桥梁。这种功能结构不仅由于金纳米颗粒而展现出强烈的表面等离子体,还由于卟啉分子而具有强烈的发光信号,因此,表现为一种人工组织的等离子体和荧光网络。金纳米颗粒与卟啉之间的相互作用调节金网络的尺寸,其大小能够很容易地读出,因为表面等离子体共振的位置强烈指示了这个尺寸。本系统可用于所有需要等离子体和发光发射体的应用。