Suppr超能文献

跨病灶和 CT 成像条件的放射组学特征的最小可检测差异的量化。

Quantification of Minimum Detectable Difference in Radiomics Features Across Lesions and CT Imaging Conditions.

机构信息

Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Duke University 2424 Erwin Rd, Suite 302, Durham, NC 27705.

Clinical Imaging Physics Group, Carl E. Ravin Advanced Imaging, Laboratories Medical Physics Graduate Program, Durham, North Carolina.

出版信息

Acad Radiol. 2021 Nov;28(11):1570-1581. doi: 10.1016/j.acra.2020.07.029. Epub 2020 Aug 20.

Abstract

RATIONALE AND OBJECTIVES

The 3-fold purpose of this study was to (1) develop a method to relate measured differences in radiomics features in different computed tomography (CT) scans to one another and to true feature differences; (2) quantify minimum detectable change in radiomics features based on measured radiomics features from pairs of synthesized CT images acquired under variable CT scan settings, and (3) ascertain and inform the recommendations of the Quantitative Imaging Biomarkers Alliance (QIBA) for nodule volumetry.

MATERIALS AND METHODS

Images of anthropomorphic lung nodule models were simulated using resolution and noise properties for 297 unique imaging conditions. Nineteen morphology features were calculated from both the segmentation masks derived from the imaged nodules and from ground truth nodules. Analysis was performed to calculate minimum detectable difference of radiomics features as a function of imaging protocols in comparison to QIBA guidelines.

RESULTS

The minimum detectable differences ranged from 1% to 175% depending on the specific feature and set of imaging protocols. The results showed that QIBA protocol recommendations result in improved minimum detectable difference as compared to the range of possible protocols. The results showed that the minimum detectable differences may be improved from QIBA's current recommendation by further restricting the slice thickness requirement to be between 0.5 mm and 1 mm.

CONCLUSION

Minimum detectable differences of radiomics features were quantified for lung nodules across a wide range of possible protocols. The results can be used prospectively to inform decision-making about imaging protocols to provide superior quantification of radiomics features.

摘要

目的

本研究有三重目的:(1)开发一种方法,将不同 CT 扫描中测量的放射组学特征差异与真实特征差异联系起来;(2)基于在不同 CT 扫描设置下获取的合成 CT 图像对测量的放射组学特征,量化放射组学特征的最小可检测变化;(3)确定并告知定量成像生物标志物联盟(QIBA)对结节体积测量的建议。

材料和方法

使用 297 种独特成像条件的分辨率和噪声特性模拟人体肺部结节模型的图像。从成像结节和真实结节导出的分割掩模中计算了 19 种形态特征。进行了分析,以根据成像方案计算放射组学特征的最小可检测差异,并与 QIBA 指南进行比较。

结果

最小可检测差异范围从特定特征和成像方案的 1%到 175%不等。结果表明,与可能的方案范围相比,QIBA 方案建议可改善最小可检测差异。结果表明,通过进一步将切片厚度要求限制在 0.5 毫米至 1 毫米之间,最小可检测差异可以从 QIBA 的当前建议中得到改善。

结论

对肺结节的放射组学特征进行了最小可检测差异的量化,涵盖了广泛的可能方案。结果可用于前瞻性地告知成像方案的决策,以提供放射组学特征的优越量化。

相似文献

引用本文的文献

本文引用的文献

6
Lung-RADS: Pushing the Limits.肺结节分析报告系统:突破极限
Radiographics. 2017 Nov-Dec;37(7):1975-1993. doi: 10.1148/rg.2017170051. Epub 2017 Oct 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验