Suppr超能文献

光谱分割和放射组学特征可从双能 CT 血管造影预测颈动脉狭窄和同侧缺血负担。

Spectral segmentation and radiomic features predict carotid stenosis and ipsilateral ischemic burden from DECT angiography.

机构信息

Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA; MGH Webster Center for Quality and Safety, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Diagn Interv Radiol. 2022 May;28(3):264-274. doi: 10.5152/dir.2022.20842.

Abstract

PURPOSE The purpose of this study is to compare spectral segmentation, spectral radiomic, and single- energy radiomic features in the assessment of internal and common carotid artery (ICA/CCA) stenosis and prediction of surgical outcome. METHODS Our ethical committee-approved, Health Insurance Portability and Accountability Act (HIPAA)- compliant study included 85 patients (mean age, 73 ± 10 years; male : female, 56 : 29) who under- went contrast-enhanced, dual-source dual-energy CT angiography (DECTA) (Siemens Definition Flash) of the neck for assessing ICA/CCA stenosis. Patients with a prior surgical or interventional treatment of carotid stenosis were excluded. Two radiologists graded the severity of carotid ste- nosis on DECTA images as mild (<50% luminal narrowing), moderate (50%-69%), and severe (>70%) stenosis. Thin-section, low- and high-kV DICOM images from the arterial phase acquisi- tion were processed with a dual-energy CT prototype (DTA, eXamine, Siemens Healthineers) to generate spectral segmentation and radiomic features over regions of interest along the entire length (volume) and separately at a single-section with maximum stenosis. Multiple logistic regressions and area under the receiver operating characteristic curve (AUC) were used for data analysis. RESULTS Among 85 patients, 22 ICA/CCAs had normal luminal dimensions and 148 ICA/CCAs had luminal stenosis (mild stenosis: 51, moderate: 38, severe: 59). For differentiating non-severe and severe ICA/CCA stenosis, radiomic features (volume: AUC=0.94, 95% CI 0.88-0.96; section: AUC=0.92, 95% CI 0.86-0.93) were significantly better than spectral segmentation features (volume: AUC = 0.86, 95% CI 0.74-0.87; section: AUC = 0.68, 95% CI 0.66-0.78) (P < .001). Spectral radiomic features predicted revascularization procedure (AUC = 0.77) and the presence of ipsilateral intra- cranial ischemic changes (AUC = 0.76). CONCLUSION Spectral segmentation and radiomic features from DECTA can differentiate patients with differ- ent luminal ICA/CCA stenosis grades.

摘要

目的

本研究旨在比较光谱分割、光谱放射组学和单能量放射组学特征,以评估颈内动脉/颈总动脉(ICA/CCA)狭窄的程度和预测手术结果。

方法

我们的研究得到了伦理委员会的批准,并符合《健康保险携带和责任法案》(HIPAA)的规定,共纳入了 85 名患者(平均年龄 73±10 岁;男性:女性=56:29),这些患者接受了对比增强、双源双能 CT 血管造影(DECTA)(西门子 Definition Flash)检查,以评估 ICA/CCA 狭窄的程度。排除了有颈动脉狭窄手术或介入治疗史的患者。两名放射科医生根据 DECTA 图像对颈动脉狭窄的严重程度进行分级,分为轻度(狭窄<50%)、中度(50%-69%)和重度(>70%)。从动脉期采集的薄层、低千伏和高千伏 DICOM 图像,由双能 CT 原型(DTA,eXamine,西门子医疗)处理,生成沿着整个长度(体积)和在具有最大狭窄的单个节段处的感兴趣区域的光谱分割和放射组学特征。多变量逻辑回归和受试者工作特征曲线下面积(AUC)用于数据分析。

结果

在 85 名患者中,22 条 ICA/CCA 管腔正常,148 条 ICA/CCA 管腔狭窄(轻度狭窄 51 条,中度狭窄 38 条,重度狭窄 59 条)。在区分非重度和重度 ICA/CCA 狭窄方面,放射组学特征(体积:AUC=0.94,95%CI 0.88-0.96;节段:AUC=0.92,95%CI 0.86-0.93)明显优于光谱分割特征(体积:AUC=0.86,95%CI 0.74-0.87;节段:AUC=0.68,95%CI 0.66-0.78)(P<0.001)。光谱放射组学特征可预测血运重建手术(AUC=0.77)和同侧颅内缺血性改变的发生(AUC=0.76)。

结论

DECTA 的光谱分割和放射组学特征可区分不同管腔 ICA/CCA 狭窄程度的患者。

相似文献

5
Duplex ultrasound velocity criteria for the stented carotid artery.
J Vasc Surg. 2008 Jan;47(1):63-73. doi: 10.1016/j.jvs.2007.09.038.
7
Carotid bifurcation calcium and correlation with percent stenosis of the internal carotid artery on CT angiography.
Neuroradiology. 2005 Jan;47(1):1-9. doi: 10.1007/s00234-004-1301-4. Epub 2005 Jan 14.
8
Critical appraisal of the Carotid Duplex Consensus criteria in the diagnosis of carotid artery stenosis.
J Vasc Surg. 2011 Jan;53(1):53-9; discussion 59-60. doi: 10.1016/j.jvs.2010.07.045. Epub 2010 Oct 15.

引用本文的文献

3
What to Expect (and What Not) from Dual-Energy CT Imaging Now and in the Future?
J Imaging. 2024 Jun 26;10(7):154. doi: 10.3390/jimaging10070154.
4
Quality assessment of radiomics models in carotid plaque: a systematic review.
Quant Imaging Med Surg. 2024 Jan 3;14(1):1141-1154. doi: 10.21037/qims-23-712. Epub 2023 Nov 17.

本文引用的文献

1
Effect of vessel wall segmentation on volumetric and radiomic parameters of coronary plaques with adverse characteristics.
J Cardiovasc Comput Tomogr. 2021 Mar-Apr;15(2):137-145. doi: 10.1016/j.jcct.2020.08.001. Epub 2020 Aug 10.
2
Can we measure vulnerable plaques on coronary CT angiography with both precision and accuracy?
J Cardiovasc Comput Tomogr. 2021 Mar-Apr;15(2):146-147. doi: 10.1016/j.jcct.2020.08.007. Epub 2020 Aug 20.
4
Quantification of Minimum Detectable Difference in Radiomics Features Across Lesions and CT Imaging Conditions.
Acad Radiol. 2021 Nov;28(11):1570-1581. doi: 10.1016/j.acra.2020.07.029. Epub 2020 Aug 20.
5
Deaths: Final Data for 2017.
Natl Vital Stat Rep. 2019 Jun;68(9):1-77.
7
Semiautomatic Segmentation and Radiomics for Dual-Energy CT: A Pilot Study to Differentiate Benign and Malignant Hepatic Lesions.
AJR Am J Roentgenol. 2020 Aug;215(2):398-405. doi: 10.2214/AJR.19.22164. Epub 2020 May 14.
9
Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer.
Eur Radiol. 2020 Apr;30(4):2324-2333. doi: 10.1007/s00330-019-06621-x. Epub 2020 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验