Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA; MGH Webster Center for Quality and Safety, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA.
Diagn Interv Radiol. 2022 May;28(3):264-274. doi: 10.5152/dir.2022.20842.
PURPOSE The purpose of this study is to compare spectral segmentation, spectral radiomic, and single- energy radiomic features in the assessment of internal and common carotid artery (ICA/CCA) stenosis and prediction of surgical outcome. METHODS Our ethical committee-approved, Health Insurance Portability and Accountability Act (HIPAA)- compliant study included 85 patients (mean age, 73 ± 10 years; male : female, 56 : 29) who under- went contrast-enhanced, dual-source dual-energy CT angiography (DECTA) (Siemens Definition Flash) of the neck for assessing ICA/CCA stenosis. Patients with a prior surgical or interventional treatment of carotid stenosis were excluded. Two radiologists graded the severity of carotid ste- nosis on DECTA images as mild (<50% luminal narrowing), moderate (50%-69%), and severe (>70%) stenosis. Thin-section, low- and high-kV DICOM images from the arterial phase acquisi- tion were processed with a dual-energy CT prototype (DTA, eXamine, Siemens Healthineers) to generate spectral segmentation and radiomic features over regions of interest along the entire length (volume) and separately at a single-section with maximum stenosis. Multiple logistic regressions and area under the receiver operating characteristic curve (AUC) were used for data analysis. RESULTS Among 85 patients, 22 ICA/CCAs had normal luminal dimensions and 148 ICA/CCAs had luminal stenosis (mild stenosis: 51, moderate: 38, severe: 59). For differentiating non-severe and severe ICA/CCA stenosis, radiomic features (volume: AUC=0.94, 95% CI 0.88-0.96; section: AUC=0.92, 95% CI 0.86-0.93) were significantly better than spectral segmentation features (volume: AUC = 0.86, 95% CI 0.74-0.87; section: AUC = 0.68, 95% CI 0.66-0.78) (P < .001). Spectral radiomic features predicted revascularization procedure (AUC = 0.77) and the presence of ipsilateral intra- cranial ischemic changes (AUC = 0.76). CONCLUSION Spectral segmentation and radiomic features from DECTA can differentiate patients with differ- ent luminal ICA/CCA stenosis grades.
本研究旨在比较光谱分割、光谱放射组学和单能量放射组学特征,以评估颈内动脉/颈总动脉(ICA/CCA)狭窄的程度和预测手术结果。
我们的研究得到了伦理委员会的批准,并符合《健康保险携带和责任法案》(HIPAA)的规定,共纳入了 85 名患者(平均年龄 73±10 岁;男性:女性=56:29),这些患者接受了对比增强、双源双能 CT 血管造影(DECTA)(西门子 Definition Flash)检查,以评估 ICA/CCA 狭窄的程度。排除了有颈动脉狭窄手术或介入治疗史的患者。两名放射科医生根据 DECTA 图像对颈动脉狭窄的严重程度进行分级,分为轻度(狭窄<50%)、中度(50%-69%)和重度(>70%)。从动脉期采集的薄层、低千伏和高千伏 DICOM 图像,由双能 CT 原型(DTA,eXamine,西门子医疗)处理,生成沿着整个长度(体积)和在具有最大狭窄的单个节段处的感兴趣区域的光谱分割和放射组学特征。多变量逻辑回归和受试者工作特征曲线下面积(AUC)用于数据分析。
在 85 名患者中,22 条 ICA/CCA 管腔正常,148 条 ICA/CCA 管腔狭窄(轻度狭窄 51 条,中度狭窄 38 条,重度狭窄 59 条)。在区分非重度和重度 ICA/CCA 狭窄方面,放射组学特征(体积:AUC=0.94,95%CI 0.88-0.96;节段:AUC=0.92,95%CI 0.86-0.93)明显优于光谱分割特征(体积:AUC=0.86,95%CI 0.74-0.87;节段:AUC=0.68,95%CI 0.66-0.78)(P<0.001)。光谱放射组学特征可预测血运重建手术(AUC=0.77)和同侧颅内缺血性改变的发生(AUC=0.76)。
DECTA 的光谱分割和放射组学特征可区分不同管腔 ICA/CCA 狭窄程度的患者。