Dhakal Kamal R, Walters Sarah, McGregor Juliette E, Schwarz Christina, Strazzeri Jennifer M, Aboualizadeh Ebrahim, Bateman Brittany, Huxlin Krystel R, Hunter Jennifer J, Williams David R, Merigan William H
Center for Visual Science, University of Rochester, Rochester, NY, USA.
The Institute of Optics, University of Rochester, Rochester, NY, USA.
Transl Vis Sci Technol. 2020 Jun 16;9(7):16. doi: 10.1167/tvst.9.7.16. eCollection 2020 Jun.
The development of new approaches to human vision restoration could be greatly accelerated with the use of nonhuman primate models; however, there is a paucity of primate models of outer retina degeneration with good spatial localization. To limit ablation to the photoreceptors, we developed a new approach that uses a near-infrared ultrafast laser, focused using adaptive optics, to concentrate light in a small focal volume within the retina.
In the eyes of eight anesthetized macaques, 187 locations were exposed to laser powers from 50 to 210 mW. Laser exposure locations were monitored for up to 18 months using fluorescein angiography (FA), optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO), adaptive optics scanning laser ophthalmoscope (AOSLO) reflectance imaging, two-photon excited fluorescence (TPEF) ophthalmoscopy, histology, and calcium responses of retinal ganglion cells.
This method produced localized photoreceptor loss with minimal axial spread of damage to other retinal layers, verified by structural imaging and histologic examination, although in some cases evidence of altered autofluorescence was found in the adjacent retinal pigment epithelium (RPE). Functional assessment using blood flow imaging of the retinal plexus and calcium imaging of the response of ganglion cells above the photoreceptor loss shows that inner retinal circuitry was preserved.
Although different from a genetic model of retinal degeneration, this model of localized photoreceptor loss may provide a useful testbed for vision restoration studies in nonhuman primates.
With this model, a variety of vision restoration methods can be tested in the non-human primate.
使用非人灵长类动物模型可极大地加速人类视力恢复新方法的开发;然而,缺乏具有良好空间定位的外层视网膜变性灵长类动物模型。为了将消融限制在光感受器上,我们开发了一种新方法,该方法使用近红外超快激光,并通过自适应光学进行聚焦,将光集中在视网膜内的一个小焦体积中。
在八只麻醉的猕猴眼中,187个位置暴露于50至210毫瓦的激光功率下。使用荧光素血管造影(FA)、光学相干断层扫描(OCT)、扫描激光检眼镜(SLO)、自适应光学扫描激光检眼镜(AOSLO)反射成像、双光子激发荧光(TPEF)检眼镜、组织学以及视网膜神经节细胞的钙反应,对激光暴露位置进行长达18个月的监测。
通过结构成像和组织学检查证实,该方法导致局部光感受器丧失,对其他视网膜层的损伤轴向扩散最小,尽管在某些情况下,在相邻的视网膜色素上皮(RPE)中发现了自发荧光改变的证据。使用视网膜神经丛血流成像和光感受器丧失上方神经节细胞反应的钙成像进行的功能评估表明,视网膜内层神经回路得以保留。
尽管与视网膜变性的遗传模型不同,但这种局部光感受器丧失模型可能为非人灵长类动物的视力恢复研究提供一个有用的试验平台。
利用这个模型,可以在非人灵长类动物中测试各种视力恢复方法。