Suppr超能文献

卷积神经网络助力低资源国家疟疾筛查自动化。

Convolutional neural networks to automate the screening of malaria in low-resource countries.

作者信息

Zhao Oliver S, Kolluri Nikhil, Anand Anagata, Chu Nicholas, Bhavaraju Ravali, Ojha Aditya, Tiku Sandhya, Nguyen Dat, Chen Ryan, Morales Adriane, Valliappan Deepti, Patel Juhi P, Nguyen Kevin

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States of America.

Department of Electrical & Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America.

出版信息

PeerJ. 2020 Aug 4;8:e9674. doi: 10.7717/peerj.9674. eCollection 2020.

Abstract

Malaria is an infectious disease caused by parasites, transmitted through mosquito bites. Symptoms include fever, headache, and vomiting, and in severe cases, seizures and coma. The World Health Organization reports that there were 228 million cases and 405,000 deaths in 2018, with Africa representing 93% of total cases and 94% of total deaths. Rapid diagnosis and subsequent treatment are the most effective means to mitigate the progression into serious symptoms. However, many fatal cases have been attributed to poor access to healthcare resources for malaria screenings. In these low-resource settings, the use of light microscopy on a thin blood smear with Giemsa stain is used to examine the severity of infection, requiring tedious and manual counting by a trained technician. To address the malaria endemic in Africa and its coexisting socioeconomic constraints, we propose an automated, mobile phone-based screening process that takes advantage of already existing resources. Through the use of convolutional neural networks (CNNs), we utilize a SSD multibox object detection architecture that rapidly processes thin blood smears acquired via light microscopy to isolate images of individual red blood cells with 90.4% average precision. Then we implement a FSRCNN model that upscales 32 × 32 low-resolution images to 128 × 128 high-resolution images with a PSNR of 30.2, compared to a baseline PSNR of 24.2 through traditional bicubic interpolation. Lastly, we utilize a modified VGG16 CNN that classifies red blood cells as either infected or uninfected with an accuracy of 96.5% in a balanced class dataset. These sequential models create a streamlined screening platform, giving the healthcare provider the number of malaria-infected red blood cells in a given sample. Our deep learning platform is efficient enough to operate exclusively on low-tier smartphone hardware, eliminating the need for high-speed internet connection.

摘要

疟疾是一种由寄生虫引起的传染病,通过蚊虫叮咬传播。症状包括发烧、头痛和呕吐,严重时会出现癫痫和昏迷。世界卫生组织报告称,2018年有2.28亿病例,40.5万人死亡,其中非洲占总病例的93%,总死亡人数的94%。快速诊断和后续治疗是减轻病情发展为严重症状的最有效手段。然而,许多致命病例归因于疟疾筛查的医疗资源获取不足。在这些资源匮乏的地区,使用吉姆萨染色的薄血涂片进行光学显微镜检查来检测感染的严重程度,这需要训练有素的技术人员进行繁琐的手工计数。为了解决非洲的疟疾流行问题及其并存的社会经济限制,我们提出了一种基于手机的自动化筛查流程,该流程利用现有的资源。通过使用卷积神经网络(CNN),我们采用了SSD多框目标检测架构,该架构可快速处理通过光学显微镜获取的薄血涂片,以平均精度90.4%分离单个红细胞的图像。然后我们实现了一个FSRCNN模型,该模型将32×32的低分辨率图像放大到128×128的高分辨率图像,PSNR为30.2,而通过传统双立方插值的基线PSNR为24.2。最后,我们使用经过修改的VGG16 CNN在平衡类数据集中将红细胞分类为感染或未感染,准确率为96.5%。这些顺序模型创建了一个简化的筛查平台,为医疗服务提供者提供给定样本中感染疟疾的红细胞数量。我们的深度学习平台效率足够高,可以仅在低端智能手机硬件上运行,无需高速互联网连接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aff/7413078/b70f17381604/peerj-08-9674-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验