基于深度学习的高效方法,用于使用红细胞涂片检测疟疾。

Efficient deep learning-based approach for malaria detection using red blood cell smears.

机构信息

Artificial Intelligence and Data Analytics (AIDA) Lab, CCIS, Prince Sultan University, 11586, Riyadh, Saudi Arabia.

School of Computer Science, University College Dublin, Dublin, D04 V1W8, Ireland.

出版信息

Sci Rep. 2024 Jun 10;14(1):13249. doi: 10.1038/s41598-024-63831-0.

Abstract

Malaria is an extremely malignant disease and is caused by the bites of infected female mosquitoes. This disease is not only infectious among humans, but among animals as well. Malaria causes mild symptoms like fever, headache, sweating and vomiting, and muscle discomfort; severe symptoms include coma, seizures, and kidney failure. The timely identification of malaria parasites is a challenging and chaotic endeavor for health staff. An expert technician examines the schematic blood smears of infected red blood cells through a microscope. The conventional methods for identifying malaria are not efficient. Machine learning approaches are effective for simple classification challenges but not for complex tasks. Furthermore, machine learning involves rigorous feature engineering to train the model and detect patterns in the features. On the other hand, deep learning works well with complex tasks and automatically extracts low and high-level features from the images to detect disease. In this paper, EfficientNet, a deep learning-based approach for detecting Malaria, is proposed that uses red blood cell images. Experiments are carried out and performance comparison is made with pre-trained deep learning models. In addition, k-fold cross-validation is also used to substantiate the results of the proposed approach. Experiments show that the proposed approach is 97.57% accurate in detecting Malaria from red blood cell images and can be beneficial practically for medical healthcare staff.

摘要

疟疾是一种极其恶性的疾病,由受感染的雌性蚊子叮咬引起。这种疾病不仅在人类中具有传染性,在动物中也是如此。疟疾引起的症状轻微,如发热、头痛、出汗和呕吐,以及肌肉不适;严重的症状包括昏迷、癫痫发作和肾衰竭。及时识别疟原虫对卫生工作人员来说是一项具有挑战性和混乱的工作。一位专家技术人员通过显微镜检查受感染的红细胞的示意性血涂片。识别疟疾的传统方法效率不高。机器学习方法对于简单的分类挑战很有效,但对于复杂任务则不然。此外,机器学习涉及严格的特征工程来训练模型并检测特征中的模式。另一方面,深度学习适用于复杂任务,并自动从图像中提取低级别和高级别的特征来检测疾病。在本文中,提出了一种基于深度学习的 EfficientNet 方法,用于检测使用红细胞图像的疟疾。进行了实验,并与预训练的深度学习模型进行了性能比较。此外,还使用 k 折交叉验证来证实所提出方法的结果。实验表明,该方法在从红细胞图像中检测疟疾方面的准确率达到 97.57%,对医疗保健人员具有实际的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd8/11164904/26f100762032/41598_2024_63831_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索