Maturana Carles Rubio, de Oliveira Allisson Dantas, Nadal Sergi, Bilalli Besim, Serrat Francesc Zarzuela, Soley Mateu Espasa, Igual Elena Sulleiro, Bosch Mercedes, Lluch Anna Veiga, Abelló Alberto, López-Codina Daniel, Suñé Tomàs Pumarola, Clols Elisa Sayrol, Joseph-Munné Joan
Microbiology Department, Vall d'Hebron Research Institute, Vall d'Hebron Hospital Campus, Barcelona, Spain.
Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
Front Microbiol. 2022 Nov 15;13:1006659. doi: 10.3389/fmicb.2022.1006659. eCollection 2022.
Malaria is an infectious disease caused by parasites of the genus spp. It is transmitted to humans by the bite of an infected female mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health Organization. Optical microscopy examination of blood smears is the gold standard technique for malaria diagnosis; however, it is a time-consuming method and a well-trained microscopist is needed to perform the microbiological diagnosis. New techniques based on digital imaging analysis by deep learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of infectious diseases. In particular, systems based on Convolutional Neural Networks for image detection of the malaria parasites emulate the microscopy visualization of an expert. Microscope automation provides a fast and low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic diagnosis, allowing image capture and software identification of parasites. In addition, image analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, or Neglected Tropical Diseases in endemic areas with low resources. The implementation of automated diagnosis by using smartphone applications and new digital imaging technologies in low-income areas is a challenge to achieve. Moreover, automating the movement of the microscope slide and image autofocusing of the samples by hardware implementation would systemize the procedure. These new diagnostic tools would join the global effort to fight against pandemic malaria and other infectious and poverty-related diseases.
疟疾是一种由疟原虫属寄生虫引起的传染病。它通过受感染的雌性按蚊叮咬传播给人类。在资源匮乏地区,疟疾是最常见的疾病。据世界卫生组织报告,2020年有2.41亿疟疾病例。血液涂片的光学显微镜检查是疟疾诊断的金标准技术;然而,这是一种耗时的方法,需要训练有素的显微镜专家来进行微生物诊断。基于深度学习和人工智能方法的数字成像分析的新技术是传染病诊断中一种具有挑战性的替代工具。特别是,基于卷积神经网络的疟疾寄生虫图像检测系统模仿了专家的显微镜可视化。显微镜自动化提供了快速且低成本的诊断,所需监督较少。智能手机是显微镜诊断的合适选择,可实现寄生虫图像捕获和软件识别。此外,图像分析技术可能是资源匮乏的流行地区疟疾、结核病或被忽视热带病诊断的快速且最佳解决方案。在低收入地区通过使用智能手机应用程序和新的数字成像技术实现自动诊断是一项难以实现的挑战。此外,通过硬件实现自动移动显微镜载玻片和自动聚焦样品图像将使该过程系统化。这些新的诊断工具将加入全球抗击疟疾大流行以及其他传染病和与贫困相关疾病的努力。