Suppr超能文献

利用数据科学抗击新冠疫情:全面综述

Leveraging Data Science to Combat COVID-19: A Comprehensive Review.

作者信息

Latif Siddique, Usman Muhammad, Manzoor Sanaullah, Iqbal Waleed, Qadir Junaid, Tyson Gareth, Castro Ignacio, Razi Adeel, Boulos Maged N Kamel, Weller Adrian, Crowcroft Jon

机构信息

University of Southern Queensland Springfield Queensland 4300 Australia.

Distributed Sensing Systems Group, Data61CSIRO Pullenvale QLD 4069 Australia.

出版信息

IEEE Trans Artif Intell. 2020 Sep 2;1(1):85-103. doi: 10.1109/TAI.2020.3020521. eCollection 2020 Aug.

Abstract

COVID-19, an infectious disease caused by the SARS-CoV-2 virus, was declared a pandemic by the World Health Organisation (WHO) in March 2020. By mid-August 2020, more than 21 million people have tested positive worldwide. Infections have been growing rapidly and tremendous efforts are being made to fight the disease. In this paper, we attempt to systematise the various COVID-19 research activities leveraging data science, where we define data science broadly to encompass the various methods and tools-including those from artificial intelligence (AI), machine learning (ML), statistics, modeling, simulation, and data visualization-that can be used to store, process, and extract insights from data. In addition to reviewing the rapidly growing body of recent research, we survey public datasets and repositories that can be used for further work to track COVID-19 spread and mitigation strategies. As part of this, we present a bibliometric analysis of the papers produced in this short span of time. Finally, building on these insights, we highlight common challenges and pitfalls observed across the surveyed works. We also created a live resource repository at https://github.com/Data-Science-and-COVID-19/Leveraging-Data-Science-To-Combat-COVID-19-A-Comprehensive-Review that we intend to keep updated with the latest resources including new papers and datasets.

摘要

2019冠状病毒病(COVID-19)是一种由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的传染病,2020年3月被世界卫生组织(WHO)宣布为大流行病。截至2020年8月中旬,全球已有超过2100万人检测呈阳性。感染人数一直在迅速增长,目前正在做出巨大努力来抗击这种疾病。在本文中,我们试图利用数据科学将各种COVID-19研究活动系统化,在这里我们对数据科学进行广义定义,以涵盖各种方法和工具,包括来自人工智能(AI)、机器学习(ML)、统计学、建模、模拟和数据可视化等可用于存储、处理和从数据中提取见解的方法和工具。除了回顾近期迅速增长的研究成果外,我们还调查了可用于进一步跟踪COVID-19传播和缓解策略的公共数据集和存储库。作为其中一部分,我们对这段短时间内发表的论文进行了文献计量分析。最后,基于这些见解,我们突出了在所调查的研究中观察到的常见挑战和陷阱。我们还在https://github.com/Data-Science-and-COVID-19/Leveraging-Data-Science-To-Combat-COVID-19-A-Comprehensive-Review上创建了一个实时资源库,我们打算不断更新最新资源,包括新论文和数据集。

相似文献

1
Leveraging Data Science to Combat COVID-19: A Comprehensive Review.
IEEE Trans Artif Intell. 2020 Sep 2;1(1):85-103. doi: 10.1109/TAI.2020.3020521. eCollection 2020 Aug.
4
A survey of machine learning-based methods for COVID-19 medical image analysis.
Med Biol Eng Comput. 2023 Jun;61(6):1257-1297. doi: 10.1007/s11517-022-02758-y. Epub 2023 Jan 28.
6
Early survey with bibliometric analysis on machine learning approaches in controlling COVID-19 outbreaks.
PeerJ Comput Sci. 2020 Nov 23;6:e313. doi: 10.7717/peerj-cs.313. eCollection 2020.
8
A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic.
Chaos Solitons Fractals. 2020 Dec;141:110337. doi: 10.1016/j.chaos.2020.110337. Epub 2020 Oct 10.
9
Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review.
Curr Top Med Chem. 2024;24(8):737-753. doi: 10.2174/0115680266282179240124072121.
10
COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review.
Interdiscip Sci. 2021 Jun;13(2):153-175. doi: 10.1007/s12539-021-00431-w. Epub 2021 Apr 22.

引用本文的文献

1
Assessing the impact of interregional mobility on COVID19 spread in Spain using transfer entropy.
Sci Rep. 2025 Aug 26;15(1):31504. doi: 10.1038/s41598-025-17218-4.
2
Improving CNN predictive accuracy in COVID-19 health analytics.
Sci Rep. 2025 Aug 14;15(1):29864. doi: 10.1038/s41598-025-15218-y.
6
Lung pneumonia severity scoring in chest X-ray images using transformers.
Med Biol Eng Comput. 2024 Aug;62(8):2389-2407. doi: 10.1007/s11517-024-03066-3. Epub 2024 Apr 9.
7
Artificial Intelligence and COVID-19: A Systematic umbrella review and roads ahead.
J King Saud Univ Comput Inf Sci. 2022 Sep;34(8):5898-5920. doi: 10.1016/j.jksuci.2021.07.010. Epub 2021 Jul 15.
8
Mask-Transformer-Based Networks for Teeth Segmentation in Panoramic Radiographs.
Bioengineering (Basel). 2023 Jul 17;10(7):843. doi: 10.3390/bioengineering10070843.
9
RETRACTED ARTICLE: Machine learning and data analysis-based study on the health issues post-pandemic.
Soft comput. 2023 Jun 10;28(Suppl 2):667. doi: 10.1007/s00500-023-08683-y. Print 2024 Dec.
10
Automatic detection of health misinformation: a systematic review.
J Ambient Intell Humaniz Comput. 2023 May 27:1-13. doi: 10.1007/s12652-023-04619-4.

本文引用的文献

1
RETRACTED ARTICLE: Deep learning system to screen coronavirus disease 2019 pneumonia.
Appl Intell (Dordr). 2023;53(4):4874. doi: 10.1007/s10489-020-01714-3. Epub 2020 Apr 22.
2
Pandemic data challenges.
Nat Mach Intell. 2020;2(4):193. doi: 10.1038/s42256-020-0172-7. Epub 2020 Apr 8.
4
AI-Aided Design of Novel Targeted Covalent Inhibitors against SARS-CoV-2.
Biomolecules. 2022 May 25;12(6):746. doi: 10.3390/biom12060746.
5
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network.
Appl Intell (Dordr). 2021;51(2):854-864. doi: 10.1007/s10489-020-01829-7. Epub 2020 Sep 5.
6
COVID-19 and Computer Audition: An Overview on What Speech & Sound Analysis Could Contribute in the SARS-CoV-2 Corona Crisis.
Front Digit Health. 2021 Mar 29;3:564906. doi: 10.3389/fdgth.2021.564906. eCollection 2021.
7
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.
Pattern Anal Appl. 2021;24(3):1207-1220. doi: 10.1007/s10044-021-00984-y. Epub 2021 May 9.
8
Second waves, social distancing, and the spread of COVID-19 across the USA.
Wellcome Open Res. 2021 Mar 15;5:103. doi: 10.12688/wellcomeopenres.15986.3. eCollection 2020.
9
Network medicine framework for identifying drug-repurposing opportunities for COVID-19.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2025581118.
10
Network bioinformatics analysis provides insight into drug repurposing for COVID-19.
Med Drug Discov. 2021 Jun;10:100090. doi: 10.1016/j.medidd.2021.100090. Epub 2021 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验