Friston Karl J, Parr Thomas, Zeidman Peter, Razi Adeel, Flandin Guillaume, Daunizeau Jean, Hulme Oliver J, Billig Alexander J, Litvak Vladimir, Price Catherine J, Moran Rosalyn J, Lambert Christian
The Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, UK.
Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, 3800, Australia.
Wellcome Open Res. 2021 Mar 15;5:103. doi: 10.12688/wellcomeopenres.15986.3. eCollection 2020.
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several instantiations of this (epidemic) model to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases that may result from loss of immunity-and the exchange of people between regions-and how mortality rates can be ameliorated under different strategic responses. In particular, we consider hard or soft social distancing strategies predicated on national (Federal) or regional (State) estimates of the prevalence of infection in the population. The modelling is demonstrated using timeseries of new cases and deaths from the United States to estimate the parameters of a factorial (compartmental) epidemiological model of each State and, crucially, coupling between States. Using Bayesian model reduction, we identify the effective connectivity between States that best explains the initial phases of the outbreak in the United States. Using the ensuing posterior parameter estimates, we then evaluate the likely outcomes of different policies in terms of mortality, working days lost due to lockdown and demands upon critical care. The provisional results of this modelling suggest that social distancing and loss of immunity are the two key factors that underwrite a return to endemic equilibrium.
我们最近描述了单个区域内新冠疫情的动态因果模型。在此,我们将该(疫情)模型的多个实例进行整合,以创建一个病毒在各区域间传播的(大流行)模型。我们关注的是可能因免疫力丧失以及区域间人员流动而导致的新一轮新增病例,以及在不同战略应对措施下如何降低死亡率。具体而言,我们考虑基于国家(联邦)或区域(州)对人群感染率估计的严格或宽松社交距离策略。通过使用美国新增病例和死亡病例的时间序列来进行建模,以估计每个州的析因(分区)流行病学模型的参数,关键是要估计各州之间的耦合情况。通过贝叶斯模型约简,我们确定了各州之间的有效连通性,它能最好地解释美国疫情爆发的初始阶段。利用随后得到的后验参数估计值,我们进而从死亡率、因封锁导致的工作日损失以及重症监护需求等方面评估不同政策可能产生的结果。该建模的初步结果表明,社交距离和免疫力丧失是回归地方病平衡的两个关键因素。