Suppr超能文献

复杂网络上流行病传播与信息扩散的耦合动力学

Coupling dynamics of epidemic spreading and information diffusion on complex networks.

作者信息

Zhan Xiu-Xiu, Liu Chuang, Zhou Ge, Zhang Zi-Ke, Sun Gui-Quan, Zhu Jonathan J H, Jin Zhen

机构信息

Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou 311121, PR China.

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 CD Delft, The Netherlands.

出版信息

Appl Math Comput. 2018 Sep 1;332:437-448. doi: 10.1016/j.amc.2018.03.050. Epub 2018 Apr 10.

Abstract

The interaction between disease and disease information on complex networks has facilitated an interdisciplinary research area. When a disease begins to spread in the population, the corresponding information would also be transmitted among individuals, which in turn influence the spreading pattern of the disease. In this paper, firstly, we analyze the propagation of two representative diseases ( and ) in the real-world population and their corresponding information on Internet, suggesting the high correlation of the two-type dynamical processes. Secondly, inspired by empirical analyses, we propose a nonlinear model to further interpret the coupling effect based on the SIS (Susceptible-Infected-Susceptible) model. Both simulation results and theoretical analysis show that a high prevalence of epidemic will lead to a slow information decay, consequently resulting in a high infected level, which shall in turn prevent the epidemic spreading. Finally, further theoretical analysis demonstrates that a multi-outbreak phenomenon emerges via the effect of coupling dynamics, which finds good agreement with empirical results. This work may shed light on the in-depth understanding of the interplay between the dynamics of epidemic spreading and information diffusion.

摘要

复杂网络上疾病与疾病信息之间的相互作用推动了一个跨学科研究领域的发展。当一种疾病开始在人群中传播时,相应的信息也会在个体之间传播,这反过来又会影响疾病的传播模式。在本文中,首先,我们分析了两种具有代表性的疾病(以及)在现实世界人群中的传播情况及其在互联网上的相应信息,表明这两种动态过程具有高度相关性。其次,受实证分析的启发,我们基于SIS(易感-感染-易感)模型提出了一个非线性模型,以进一步解释耦合效应。模拟结果和理论分析均表明,高流行率会导致信息衰减缓慢,从而导致高感染水平,进而阻止疫情传播。最后,进一步的理论分析表明,通过耦合动力学效应会出现多次爆发现象,这与实证结果吻合良好。这项工作可能有助于深入理解疫情传播动态与信息扩散之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c654/7112333/1ba6ca913f8e/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验