Suppr超能文献

通过蓝牙低功耗信标和商用移动设备感知社交互动。

Sensing social interactions through BLE beacons and commercial mobile devices.

作者信息

Girolami Michele, Mavilia Fabio, Delmastro Franca

机构信息

Institute of Information Science and Technologies, National Research Council (ISTI-CNR), Pisa, Italy.

Institute of Informatics and Telematics, National Research Council (IIT-CNR), Pisa, Italy.

出版信息

Pervasive Mob Comput. 2020 Sep;67:101198. doi: 10.1016/j.pmcj.2020.101198. Epub 2020 Jun 20.

Abstract

Wearable sensing devices can provide high-resolution data useful to characterise and identify complex human behaviours. Sensing human social interactions through wearable devices represents one of the emerging field in mobile social sensing, considering their impact on different user categories and on different social contexts. However, it is important to limit the collection and use of sensitive information characterising individual users and their social interactions in order to maintain the user compliance. For this reason, we decided to focus mainly on physical proximity and, specifically, on the analysis of BLE wireless signals commonly used by commercial mobile devices. In this work, we present the SocializeME framework designed to collect proximity information and to detect social interactions through heterogeneous personal mobile devices. We also present the results of an experimental data collection campaign conducted with real users, highlighting technical limitations and performances in terms of quality of RSS, packet loss, and channel symmetry, and how they are influenced by different configurations of the user's body and the position of the personal device. Specifically, we obtained a dataset with more than 820.000 Bluetooth signals (BLE beacons) collected, with a total monitoring of over 11 h. The dataset collected reproduces 4 different configurations by mixing two user posture's layouts (standing and sitting) and different positions of the receiver device (in hand, in the front pocket and in the back pocket). The large number of experiments in those different configurations, well cover the common way of holding a mobile device, and the layout of a dyad involved in a social interaction. We also present the results obtained by SME-D algorithm, designed to automatically detect social interactions based on the collected wireless signals, which obtained an overall accuracy of 81.56% and F-score 84.7%. The collected and labelled dataset is also released to the mobile social sensing community in order to evaluate and compare new algorithms.

摘要

可穿戴传感设备能够提供高分辨率数据,有助于表征和识别复杂的人类行为。通过可穿戴设备感知人类社交互动是移动社交感知领域中一个新兴的方向,因为其对不同用户群体和不同社会环境都有影响。然而,为了确保用户的依从性,限制收集和使用表征个体用户及其社交互动的敏感信息非常重要。因此,我们决定主要关注物理接近度,具体而言,关注商业移动设备常用的蓝牙低功耗(BLE)无线信号分析。在这项工作中,我们展示了SocializeME框架,该框架旨在通过异构个人移动设备收集接近度信息并检测社交互动。我们还展示了一项针对真实用户进行的实验数据收集活动的结果,突出了在接收信号强度(RSS)质量、数据包丢失和信道对称性方面的技术限制和性能,以及它们如何受到用户身体不同配置和个人设备位置的影响。具体来说,我们获得了一个数据集,其中收集了超过820,000个蓝牙信号(BLE信标),总监测时长超过11小时。收集的数据集通过混合两种用户姿势布局(站立和坐着)以及接收设备的不同位置(手中、前口袋和后口袋)再现了4种不同配置。在这些不同配置下进行的大量实验很好地涵盖了手持移动设备的常见方式以及参与社交互动的两人组合的布局。我们还展示了通过SME-D算法获得的结果,该算法旨在根据收集到的无线信号自动检测社交互动,其总体准确率为81.56%,F值为84.7%。收集并标记的数据集也已发布给移动社交感知社区,以便评估和比较新算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1b/7305734/66c1c5541769/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验