Suppr超能文献

西班牙新冠肺炎发病率环境关联因素的时空分析

A Spatio-Temporal Analysis of the Environmental Correlates of COVID-19 Incidence in Spain.

作者信息

Paez Antonio, Lopez Fernando A, Menezes Tatiane, Cavalcanti Renata, Pitta Maira Galdino da Rocha

机构信息

School of Geography and Earth Sciences McMaster University Hamilton ON Canada.

Departamento de Metodos Cuantitativos, Ciencias Juridicas, y Lenguas Modernas Universidad Politecnica de Cartagena Cartagena Spain.

出版信息

Geogr Anal. 2021 Jul;53(3):397-421. doi: 10.1111/gean.12241. Epub 2020 Jun 8.

Abstract

The novel SARS-CoV2 has disrupted health systems and the economy, and public health interventions to slow its spread have been costly. How and when to ease restrictions to movement hinges in part on whether SARS-CoV2 will display seasonality due to variations in temperature, humidity, and hours of sunshine. Here, we address this question by means of a spatio-temporal analysis in Spain of the incidence of COVID-19, the disease caused by the virus. Use of spatial Seemingly Unrelated Regressions (SUR) allows us to model the incidence of reported cases of the disease per 100,000 population as an interregional contagion process, in addition to a function of temperature, humidity, and sunshine. In the analysis we also control for GDP per capita, percentage of older adults in the population, population density, and presence of mass transit systems. The results support the hypothesis that incidence of the disease is lower at higher temperatures and higher levels of humidity. Sunshine, in contrast, displays a positive association with incidence of the disease. Our control variables also yield interesting insights. Higher incidence is associated with higher GDP per capita and presence of mass transit systems in the province; in contrast, population density and percentage of older adults display negative associations with incidence of COVID-19.

摘要

新型严重急性呼吸综合征冠状病毒2(SARS-CoV2)扰乱了卫生系统和经济,而减缓其传播的公共卫生干预措施成本高昂。如何以及何时放宽行动限制部分取决于SARS-CoV2是否会因温度、湿度和日照时长的变化而呈现季节性。在此,我们通过对西班牙新冠病毒疾病(COVID-19)发病率进行时空分析来解决这个问题。使用空间似不相关回归(SUR)方法,我们能够将每10万人口中报告的病例发病率建模为区域间的传染过程,同时也是温度、湿度和日照的函数。在分析中,我们还控制了人均国内生产总值、老年人口在总人口中的百分比、人口密度以及公共交通系统的存在情况。结果支持了以下假设:在较高温度和湿度水平下,该疾病的发病率较低。相比之下,日照与该疾病的发病率呈正相关。我们的控制变量也得出了有趣的见解。发病率较高与该省份较高的人均国内生产总值和公共交通系统的存在有关;相比之下,人口密度和老年人口百分比与COVID-19的发病率呈负相关。

相似文献

5
Does the environment affect suicide rates in Spain? A spatiotemporal analysis.环境会影响西班牙的自杀率吗?一项时空分析。
Rev Psiquiatr Salud Ment (Engl Ed). 2018 Oct-Dec;11(4):192-198. doi: 10.1016/j.rpsm.2017.05.001. Epub 2017 Jun 7.

引用本文的文献

5
Conditioning factors in the spreading of Covid-19 - Does geography matter?新冠病毒传播中的调节因素——地理位置重要吗?
Heliyon. 2024 Feb 3;10(3):e25810. doi: 10.1016/j.heliyon.2024.e25810. eCollection 2024 Feb 15.

本文引用的文献

4
Spatio-temporal evolution of Beijing 2003 SARS epidemic.2003年北京非典疫情的时空演变
Sci China Earth Sci. 2010;53(7):1017-1028. doi: 10.1007/s11430-010-0043-x. Epub 2010 May 12.
9
Seasonality of Respiratory Viral Infections.呼吸道病毒感染的季节性。
Annu Rev Virol. 2020 Sep 29;7(1):83-101. doi: 10.1146/annurev-virology-012420-022445. Epub 2020 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验