Suppr超能文献

VIStory:用于探索科学出版物中视觉信息的交互式故事板。

VIStory: interactive storyboard for exploring visual information in scientific publications.

作者信息

Zeng Wei, Dong Ao, Chen Xi, Cheng Zhang-Lin

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

J Vis (Tokyo). 2021;24(1):69-84. doi: 10.1007/s12650-020-00688-1. Epub 2020 Aug 16.

Abstract

ABSTRACT

Many visual analytics have been developed for examining scientific publications comprising wealthy data such as authors and citations. The studies provide unprecedented insights on a variety of applications, e.g., literature review and collaboration analysis. However, visual information (e.g., figures) that is widely employed for storytelling and methods description are often neglected. We present , an interactive storyboard for exploring visual information in scientific publications. We harvest a new dataset of a large corpora of figures, using an automatic figure extraction method. Each figure contains various attributes such as dominant color and width/height ratio, together with faceted metadata of the publication including venues, authors, and keywords. To depict these information, we develop an intuitive interface consisting of three components: (1) Faceted View enables efficient query by publication metadata, benefiting from a nested table structure, (2) Storyboard View arranges paper rings-a well-designed glyph for depicting figure attributes, in a themeriver layout to reveal temporal trends, and (3) Endgame View presents a highlighted figure together with the publication metadata. We illustrate the applicability of with case studies on two datasets, i.e., 10-year IEEE VIS publications, and publications by a research team at CVPR, ICCV, and ECCV conferences. Quantitative and qualitative results from a formal user study demonstrate the efficiency of in exploring visual information in scientific publications.

摘要

摘要

许多可视化分析方法已被开发出来,用于研究包含丰富数据(如作者和引用)的科学出版物。这些研究为各种应用提供了前所未有的见解,例如文献综述和合作分析。然而,广泛用于叙事和方法描述的视觉信息(如图表)却常常被忽视。我们提出了一种用于探索科学出版物中视觉信息的交互式故事板。我们使用自动图表提取方法收集了一个包含大量图表语料库的新数据集。每个图表都包含各种属性,如主色调和宽高比,以及出版物的分面元数据,包括发表场所、作者和关键词。为了描述这些信息,我们开发了一个直观的界面,它由三个组件组成:(1)分面视图通过出版物元数据实现高效查询,受益于嵌套表结构;(2)故事板视图将纸环(一种用于描述图表属性的精心设计的符号)排列在主题河流布局中,以揭示时间趋势;(3)终局视图展示一个突出显示的图表以及出版物元数据。我们通过对两个数据集的案例研究来说明该方法的适用性,这两个数据集分别是10年的IEEE VIS出版物以及一个研究团队在CVPR、ICCV和ECCV会议上发表的论文。一项正式用户研究的定量和定性结果证明了该方法在探索科学出版物视觉信息方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验