Smeal College of Business, Pennsylvania State University, University Park, PA, United States.
PricewaterhouseCoopers, LLP, New York, NY, United States.
J Med Internet Res. 2020 Aug 25;22(8):e17239. doi: 10.2196/17239.
Online pharmacies have grown significantly in recent years, from US $29.35 billion in 2014 to an expected US $128 billion in 2023 worldwide. Although legitimate online pharmacies (LOPs) provide a channel of convenience and potentially lower costs for patients, illicit online pharmacies (IOPs) open the doors to unfettered access to prescription drugs, controlled substances (eg, opioids), and potentially counterfeits, posing a dramatic risk to the drug supply chain and the health of the patient. Unfortunately, we know little about IOPs, and even identifying and monitoring IOPs is challenging because of the large number of online pharmacies (at least 30,000-35,000) and the dynamic nature of the online channel (online pharmacies open and shut down easily).
This study aims to increase our understanding of IOPs through web data traffic analysis and propose a novel framework using referral links to predict and identify IOPs, the first step in fighting IOPs.
We first collected web traffic and engagement data to study and compare how consumers access and engage with LOPs and IOPs. We then proposed a simple but novel framework for predicting the status of online pharmacies (legitimate or illicit) through the referral links between websites. Under this framework, we developed 2 prediction models, the reference rating prediction method (RRPM) and the reference-based K-nearest neighbor.
We found that direct (typing URL), search, and referral are the 3 major traffic sources, representing more than 95% traffic to both LOPs and IOPs. It is alarming to see that direct represents the second-highest traffic source (34.32%) to IOPs. When tested on a data set with 763 online pharmacies, both RRPM and R2NN performed well, achieving an accuracy above 95% in their predictions of the status for the online pharmacies. R2NN outperformed RRPM in full performance metrics (accuracy, kappa, specificity, and sensitivity). On implementing the 2 models on Google search results for popular drugs (Xanax [alprazolam], OxyContin, and opioids), they produced an error rate of only 7.96% (R2NN) and 6.20% (RRPM).
Our prediction models use what we know (referral links) to tackle the many unknown aspects of IOPs. They have many potential applications for patients, search engines, social media, payment companies, policy makers or government agencies, and drug manufacturers to help fight IOPs. With scarce work in this area, we hope to help address the current opioid crisis from this perspective and inspire future research in the critical area of drug safety.
近年来,网上药店的规模显著扩大,从 2014 年的 293.5 亿美元预计增长到 2023 年的 1280 亿美元,遍及全球。尽管合法网上药店(LOP)为患者提供了便利和潜在的更低成本的购药渠道,但非法网上药店(IOP)则为不受限制地获取处方药物、管制物质(如阿片类药物)和潜在的假药大开方便之门,这对药品供应链和患者健康构成了巨大风险。不幸的是,我们对 IOP 知之甚少,甚至识别和监测 IOP 也具有挑战性,因为网上药店的数量众多(至少 30,000-35,000 家),而且在线渠道的动态性质(网上药店易于开设和关闭)。
本研究旨在通过网络数据流量分析来增进对 IOP 的了解,并提出一种使用推荐链接预测和识别 IOP 的新框架,这是打击 IOP 的第一步。
我们首先收集了网络流量和参与度数据,以研究和比较消费者如何访问和使用 LOP 和 IOP。然后,我们提出了一个简单但新颖的框架,通过网站之间的推荐链接来预测网上药店(合法或非法)的状态。在该框架下,我们开发了 2 种预测模型,即参考评分预测方法(RRPM)和基于参考的 K-最近邻。
我们发现,直接(输入 URL)、搜索和推荐是 3 种主要的流量来源,占 LOP 和 IOP 流量的 95%以上。令人震惊的是,直接流量在 IOP 中占第二大流量来源(34.32%)。在一个包含 763 家网上药店的数据集上进行测试时,RRPM 和 R2NN 都表现良好,其对网上药店状态的预测准确率均高于 95%。R2NN 在所有性能指标(准确性、kappa、特异性和敏感性)上均优于 RRPM。将这 2 种模型应用于 Google 搜索热门药物(Xanax [阿普唑仑]、OxyContin 和阿片类药物)的搜索结果,它们的错误率仅为 7.96%(R2NN)和 6.20%(RRPM)。
我们的预测模型利用了我们已知的信息(推荐链接)来解决 IOP 许多未知的方面。它们具有许多潜在的应用,可用于帮助患者、搜索引擎、社交媒体、支付公司、政策制定者或政府机构以及药品制造商打击 IOP。由于该领域的工作很少,我们希望从这个角度帮助解决当前的阿片类药物危机,并激发在药物安全这一关键领域的未来研究。