Suppr超能文献

The enhanced transfer of drug-resistant genes in NIH-3T3 cells transformed by the EJras oncogene.

作者信息

Wong D, Liu E, Cadman E

机构信息

Cancer Research Institute, University of California, Moffitt-Long Hospital, San Francisco.

出版信息

Yale J Biol Med. 1988 Jan-Feb;61(1):1-10.

Abstract

The spontaneous transfer of drug resistance genes has been shown to take place between cultured mammalian NIH-3T3 cells and occurs with a hierarchy of transfer efficiencies, transformed cells being more efficient than non-transformed cells. This experiment was accomplished by co-cultivating two NIH-3T3 sublines, each transfected by standard plasmid methods with a different drug resistance gene, subjecting the mixed population to double selection by adding both drugs to the mixed cell culture, and isolating single cells which were resistant to both drugs. The genes used were the neo gene and gpt gene which conferred resistance to the drugs G418 and mycophenolic acid, respectively. DNA analysis confirmed the presence of both resistance genes in the cells which were resistant to both drugs. The mechanism of this gene transfer was by cell fusion rather than by chromosomal DNA uptake. The efficiency of gene transfer, as indicated by the number of double-resistant colonies standardized by number of cells cultured, was much higher between two sublines of cells transformed by the EJras oncogene than between one transformed and one non-transformed subline, which in turn was higher than between two non-transformed sublines. The higher efficiency of gene transfer between the transformed cells also occurred when these cells were injected into nude mice, thus demonstrating that the same process occurred in vivo. It would appear that drug resistance genes may be transferred spontaneously in cultured mammalian cells by cell fusion, and that transformed cells have a higher efficiency of gene transfer compared to non-transformed cells.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e542/2590405/19a32f3a0c5b/yjbm00073-0011-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验